
As the rotation rate of the degenerate core is reduced by magnetic
braking and the convective envelope is removed, the stellar dynamo
will shut down. Some remnant ®eld anchored in the core will
survive even without a convection zone, although the convective
envelope may not be removed completely. Indeed, white dwarfs do
have thin surface convection zones which can support a near-
surface dynamo in the white dwarf itself 20.

We have thus demonstrated that dynamos are likely to operate in
AGB stars. As a star evolves off the AGB, the dynamo-generated
magnetic ®eld will be strong enough to drive a strong, self-
collimating out¯ow and to slow the rotation of the core by magnetic
braking. Eruptions analogous to coronal mass ejections, expected as
a consequence of the dynamo activity, could produce asymmetric
structures in the wind. Thus our model opens up the possibility of
constructing a new, self-consistent paradigm for planetary-nebula
formation, beginning with AGB stars and ending with slowly
rotating white dwarfs. M
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Observations of martian surface morphology have been used to
argue that an ancient ocean once existed on Mars1. It has been
thought that signi®cant quantities of such water could have been
supplied to the martian surface through volcanic outgassing, but
this suggestion is contradicted by the low magmatic water content
that is generally inferred from chemical analyses of igneous
martian meteorites2. Here, however, we report the distributions
of trace elements within pyroxenes of the Shergotty meteoriteÐa
basalt body ejected 175 million years ago from Mars3Ðas well as
hydrous and anhydrous crystallization experiments that,
together, imply that water contents of pre-eruptive magma on
Mars could have been up to 1.8%. We found that in the Shergotty
meteorite, the inner cores of pyroxene minerals (which formed at
depth in the martian crust) are enriched in soluble trace elements
when compared to the outer rims (which crystallized on or near to
the martian surface). This implies that water was present in
pyroxenes at depth but was largely lost as pyroxenes were carried
to the surface during magma ascent. We conclude that ascending
magmas possibly delivered signi®cant quantities of water to the
martian surface in recent times, reconciling geologic and petro-
logic constraints on the outgassing history of Mars.

The Shergotty meteorite is a martian basalt (shergottite),
approximately 175 million years old3, with measured water
contents4 of only 130±350 parts per million (p.p.m.). Pyroxenes
(pigeonite and augite) were the earliest crystallizing minerals, and
the homogeneous magnesian cores of these grains are thought to
have formed at depth and been entrained in the ascending magma3,5.
During ascent or eruption, the pyroxenes developed iron-rich rims,
as plagioclase and other minerals joined the crystallization
sequence. The pyroxene core and rim compositions thus re¯ect
magma compositions at depth and near (or on) the planet's surface,
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respectively. The presence of hydrous amphibole within trapped
melt inclusions in pyroxene cores previously fuelled speculation
that the Shergotty magma contained 1±2 wt% water at depth6, but
con¯icting interpretations of the low measured hydrogen contents
in these amphiboles7±9 suggest that this evidence is inconclusive.

Abundances of trace elements in cores and rims also record the
magma's evolution. Analyses of Li, Be, B, Ce, Y and Ti in Shergotty
pyroxenes using secondary-ion mass spectrometry are summarized
in Table 1 of Supplementary Information. During fractional crystal-
lization of pyroxenes, all these incompatible elements should parti-
tion into the melt, and thus their abundances should increase from
pyroxene cores to rims. As expected, Be and Ti increase from core to
rim, whereas B and Li decrease (Fig. 1a, b). Ce also appears to
decrease relative to Y, which behaves similarly to heavy rare-earth
elements (Fig. 1c).

The presence of hot aqueous ¯uid could alter the expected
partitioning behaviour during fractional crystallization, because B
and Li are soluble at temperatures greater than 350 8C (ref. 10).
Partitioning of these elements between clinopyroxene, magma and
¯uids has been studied experimentally at magmatic temperatures11,
revealing clear preferences for the aqueous phase. Unlike most other
rare-earth elements, cerium can exist in more than one valence
state, but any Ce4+ in magma should be reduced by Fe2+. Ce3+

has been suggested to be more soluble than other rare earths,
possibly accounting for negative Ce anomalies observed in some
subduction-zone lavas12. Thus Ce might also partition into an
aqueous ¯uid, although its concentration in pyroxene rims might
also be affected if whitlockite co-crystallized. The observed deple-
tions of B, Li, and perhaps Ce/Y in Shergotty pyroxene rims are

consistent with removal of aqueous ¯uid after crystallization of the
cores at depth. These observations suggest that water, carrying
soluble trace elements, was exsolved and lost from the magma on
ascent and eruption.

The Mg/(Mg+Fe) ratios of pigeonite and augite cores indicate
that both pyroxenes in Shergotty crystallized simultaneously5,13.
Imaging shows that Shergotty contains approximately 13 vol.% of
accumulated pyroxene cores, and the composition of crystal-free
liquid has been estimated by subtracting pyroxenes from the bulk
meteorite composition13. We performed crystallization experiments
on this intercumulus liquid composition to determine if it would
co-crystallize augite and pigeonite with compositions like those in
Shergotty. Initial experimental conditions were anhydrous, at a
pressure of 0.1 MPa and an oxygen fugacity set by the quartz±
fayalite±magnetite (QFM) buffer. Compositions of pyroxenes crys-
tallized under these conditions are summarized in Fig. 2. The
Shergotty liquid composition did not produce a crystallizing
assemblage at 0.1 MPa resembling the mineral assemblage in Sher-
gotty. Instead of augite and pigeonite coexisting as liquidus phases,
our 0.1-MPa results show a large crystallization interval for pigeo-
nite (,100 8C) before an Fe-enriched low-wollastonite (low-Wo)
augite appears (Fig. 2). Similar experimental results have been
documented by other workers14,15. Calculations of the crystallization
sequence at elevated pressures13 and crystallization experiments
undertaken at varying oxygen fugacities15 indicate that this discre-
pancy is not an effect of increased pressure or a different oxidation
state.

We performed a second series of experiments at elevated water
pressures (100 and 200 MPa) to test the in¯uence of H2O on the
Shergotty crystallization sequence. At 100 MPa pigeonite was again
the liquidus phase, and crystallized over a signi®cant temperature
interval (,80 8C) before augite appeared. The effect of the elevated
H2O content of the 200-MPa experiment was to expand the olivine
primary phase volume so that the Shergotty intercumulus liquid
was saturated near its liquidus with olivine, pigeonite and augite.
Because the pigeonite and augite coexist as near-liquidus phases,
pyroxenes from the 200-MPa experiments are very similar to the
Shergotty pyroxene cores (Fig. 2). However, the CaSiO3 (Wo)
contents of the pigeonite cores in Shergotty are higher by
,4 mol% (average Wo content, 13 mol%) than that produced in
the 200-MPa experiment (average Wo, 8.7 mol%) (see Table 2 of
Supplementary Information). The difference in Wo content implies
that pigeonite and augite in the Shergotty meteorite crystallized at
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higher temperature than in our 200-MPa experiment. The effect of
H2O is to bring pigeonite and augite nearer the liquidus, but the
200-MPa experimental pyroxenes are not identical to the Shergotty
pigeonite and augite cores.

To produce a melt saturated with two pyroxenes on its liquidus at
lower water contents, the bulk composition must be modi®ed
slightly. We synthesized a new liquid composition by adding
15 wt% augite that had an Mg/(Mg+Fe) ratio similar to that of
the intercumulus liquid. This modi®ed composition was run at 0.1
and 100 MPa. At 100 MPa, augite and pigeonite are liquidus phases
at 1,150 8C. At 0.1 MPa, augite is the liquidus phase at 1,170 8C, and
both augite and pigeonite are present at 1,150 8C at the QFM buffer.
The average pigeonite composition in the 0.1-MPa run has
14.7 mol% Wo (Fig. 2). Therefore, the composition of the liquidus
pigeonite and augite in Shergotty records a temperature and H2O
content that is between our 0.1-MPa anhydrous result and the
hydrous 100- and 200-MPa experiments.

The effect of variations in temperature on the compositions of
coexisting augite and pigeonite has been investigated previously16.
The reported relation between temperature and the Wo content of
pigeonite coexisting with augite on the pigeonite±augite solvus is
identical to that obtained in the present work from the 0.1-MPa and
200-MPa Shergotty experiments. Therefore, the conditions of
crystallization of the Shergotty pyroxenes can be used to infer the
liquidus temperature and pre-eruptive H2O pressure. The effects of
variations in H2O pressure on the temperature of the vapour-
saturated liquidus are well known for natural basaltic magmas17,18.
Using the 0.1- and 200-MPa pigeonites that coexist with augite as a
guide, we estimated by interpolation the liquidus temperature for
augite and pigeonite in the Shergotty meteorite. We obtained a
temperature of 1,120 8C and a magmatic H2O content of ,1.8 wt%.
These pre-eruptive conditions correspond to a pressure of ,55 MPa

using the model of ref. 19, or a depth of ,5 km in the martian crust.
This pre-eruptive H2O content is similar to the dissolved water
content inferred for other martian magmas20, and also to the
composition of andesitic rocks determined by the Mars
Path®nder21.

The magmatic evolution of the Shergotty parent magma that we
propose is illustrated in Fig. 3. Vesiculation and loss of water
occurred after pyroxene cores crystallized at a depth of greater
than 5 km. Although no vesicles are observed in Shergotty, a model
of volatile exsolution in martian magmas22 indicates that outgassing
should be gradual but continuous above this depth. Because of
lower martian gravity, gas exsolution begins at greater depth than
on Earth, and the low atmospheric pressure on Mars encourages
thorough degassing as the magma ascends23. Magma outgassing,
even on Earth, can be very ef®cient; for example, viscous rhyolitic
magma at Mono Craters, California, was found to lose more than
95% of its total waterÐfrom 2.4 to 0.11 wt%Ðon ascent24.

Can we generalize the Shergotty meteorite results to Mars? Based
on similarities in visible and near-infrared re¯ectance spectra,
Shergotty-like basalts have been suggested to dominate large areas
of the martian surface25, although basalts mapped by thermal
emission spectroscopy on the Mars Global Surveyor orbiter26

appear to have spectra distinct from shergottites.
Although the water content of the Shergotty magma may have

increased during fractionation before the crystallization of pyroxene
phenocrysts, the presence of ,1.8 wt% water appears to be incon-
sistent with the dry mantle of the conventional Mars model2. This
model2 estimates the abundance of water in the martian mantle to
be 36 p.p.m., on the basis of the abundance of Cl and the relative
solubilities of Cl and H2O in basaltic magma. The same procedure
would give an incorrect estimation of water in the Earth's mantle,
because Cl has been sequestered in the crust. A newer Mars
compositional model27, based on matching oxygen isotopes, sug-
gests a bulk-planet Cl abundance eight times higher than that
estimated from element ratios, which would imply a correspond-
ingly greater mantle water content. A value of several hundred
p.p.m. of water is comparable to the terrestrial mantle; it is also
consistent with observed enrichments of other volatile elements in
martian meteorites2, and allows higher magmatic water contents at
reasonable degrees of partial melting. Alternatively, a Shergotty
magma produced by anhydrous mantle melting could have inter-
acted with metasomatized, hydrated mantle lithosphere during
ascent.

It is also possible that the water in the Shergotty meteorite was
added during assimilation of martian crustal materials or by
interaction with martian groundwater systems21. Trace-element
and radiogenic-isotope patterns in Shergotty have been interpreted
to re¯ect contamination by the martian crust28,29, and the high
oxidation state of Shergotty relative to some other shergottites30

suggests that the assimilant may have been at least partly ¯uid. In
any case, the inference that outgassing occurred in martian basaltic
magma that erupted relatively recently (,175 Myr ago) argues that
substantial water must have been delivered by magmas to the
planet's surface in middle martian history. M

Methods
Shergotty USNM 321-2 was soaked for 2 h in a 1% mannitol solution, and rinsed in B-free
distilled water to minimize surface contamination by B. The section was promptly coated
with Au and analysed using the Oak Ridge National Laboratory Cameca ims-4f ion probe.
The sample was bombarded with a 12.5-kV primary beam of 16O- ions, using a primary
beam current of 10 nA and a beam size of ,20 mm. Positive secondary ions were extracted
into the secondary mass spectrometer with a mass resolution of ,600 to eliminate the
interference of Al3+ on 9Be. An energy offset of 80 eV was applied to eliminate molecular
ions. Calibration curves were derived using multiple measurements of natural mineral and
glass standards. Detection limits for Li, Be, B, Ce, Y and Ti were well below measured
values.

The crystallization temperatures of pigeonite and augite in Shergotty were estimated
using the pyroxenes in the experiment of longest duration. The 0.1-MPa experiment was
run for 168 h and the 200-MPa experiment was run for 26 h under hydrous conditions.
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Figure 3 Schematic illustration of pyroxene crystallization and outgassing of the Shergotty

parent magma at depth, during ascent, and on eruption.
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These experimental durations produced relatively homogeneous crystalline products, as
determined by electron microprobe. The 100-MPa experiment is at extreme conditions for
hydrous experiments and could only be run for 9 h. The compositions of these pyroxenes
varied signi®cantly and were not used to estimate crystallization temperature.
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Electromagnetically induced transparency1±3 is a quantum inter-
ference effect that permits the propagation of light through an
otherwise opaque atomic medium; a `coupling' laser is used to
create the interference necessary to allow the transmission of
resonant pulses from a `probe' laser. This technique has been
used4±6 to slow and spatially compress light pulses by seven orders
of magnitude, resulting in their complete localization and con-
tainment within an atomic cloud4. Here we use electromagneti-
cally induced transparency to bring laser pulses to a complete stop
in a magnetically trapped, cold cloud of sodium atoms. Within the
spatially localized pulse region, the atoms are in a superposition
state determined by the amplitudes and phases of the coupling
and probe laser ®elds. Upon sudden turn-off of the coupling laser,
the compressed probe pulse is effectively stopped; coherent
information initially contained in the laser ®elds is `frozen' in
the atomic medium for up to 1 ms. The coupling laser is turned
back on at a later time and the probe pulse is regenerated: the
stored coherence is read out and transferred back into the
radiation ®eld. We present a theoretical model that reveals that
the system is self-adjusting to minimize dissipative loss during the
`read' and `write' operations. We anticipate applications of this
phenomenon for quantum information processing.

With the coupling and probe lasers used in the experiment, the
atoms are accurately modelled as three-level atoms interacting with
the two laser ®elds ( Fig. 1a). Under perfect electromagnetically-
induced transparency (EIT) conditions (two-photon resonance), a
stationary eigenstate exists for the system of a three-level atom and
resonant laser ®elds, where the atom is in a `dark', coherent super-
position of states |1i and |2i:

jDi � ­cj1i 2 ­pj2iexp�i�kp 2 kc�×r 2 i�qp 2 qc�t�������������������
­2

c � ­2
p

q �1�

Here ­p and ­c are the Rabi frequencies, kp and kc the wavevectors,
and qp and qc the optical angular frequencies of the probe and
coupling lasers, respectively. The Rabi frequencies are de®ned as
­p;c [ e Ep;c×r13;23=~, where e is the electron charge, Ep,c are the slowly
varying envelopes of probe and coupling ®eld amplitudes, and
e r13,23 are the electric dipole moments of the atomic transitions. The
dark state does not couple to the radiatively decaying state |3i, which
eliminates absorption of the laser ®elds1±3.

Atoms are prepared (magnetically trapped) in a particular inter-
nal quantum state |1i (Fig. 1a). The atom cloud is ®rst illuminated
by a coupling laser, resonant with the |2i±|3i transition. With only
the coupling laser on and all atoms in |1i, the system is in a dark state
(equation (1) with ­p � 0). A probe laser pulse, tuned to the |1i±|3i
transition and co-propagating with the coupling laser, is subse-
quently sent through the atomic medium. Atoms within the pulse
region are driven into the dark-state superposition of states |1i and
|2i, determined by the ratio of the instantaneous Rabi frequencies of
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