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PROPERTIES OF INFINITE HARMONIC FUNCTIONS
ON GRUSHIN-TYPE SPACES

THOMAS BIESKE

ABSTRACT. In this paper, we examine potential-theoretic
and geometric properties of viscosity infinite harmonic func-
tions in Grushin-type spaces, which are sub-Riemannian
spaces lacking a group structure. In particular, we prove such
functions enjoy comparison with Grushin cones. As a con-
sequence, the distance function is viscosity infinite superhar-
monic, but we show that it is not necessarily viscosity infinite
subharmonic and give geometric conditions when it is.

1. Introduction. The goal of this paper is to examine viscos-
ity infinite harmonic functions in Grushin-type spaces from both the
potential-theoretic and the geometric viewpoints. Motivated by the au-
thor’s result in [5] that CL, absolute minimizers are viscosity infinite
harmonic (see Sections 3 and 4 for relevant definitions) and its improve-
ment by Wang [15], who relaxes the regularity, we wish to establish the
potential-theoretic properties of viscosity infinite harmonic functions.
In particular, we wish to prove the following main theorem:

Main theorem. Given a domain Q and a function u, the following
are equivalent.

(1) u is an absolute minimizer.

(2) u is viscosity infinite harmonic.

(3) u is potential harmonic.

(4) u enjoys comparison with Grushin cones.

In addition, the corresponding “one-sided” statements hold. Namely,
the following are equivalent.

(I) u is an absolute sub (super)-minimizer.
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(I1) u is a viscosity infinite sub (super)-harmonic.
(IIT) u is a potential infinite sub (super)-harmonic.

(IV) u enjoys comparison with Grushin cones from above (below).

Focusing on the cone characterization in this theorem, we will then
examine the geometry of the cones. Grushin-type spaces possess a
rich geometry that has recently been explored in such papers as [7,
8]. This geometry, which at some points is Riemannian and some sub-
Riemannian, provides a contrast to Euclidean spaces. Even though the
Grushin distance function is viscosity infinite superharmonic, it need
not be viscosity infinite subharmonic. This is unlike the FEuclidean
case, where the distance function is viscosity infinite superharmonic and
subharmonic. We will give geometric conditions for when the distance
function is viscosity infinite subharmonic.

The paper is divided up in the following manner. In Section 2,
we provide the needed background properties of Grushin-type spaces.
In Section 3, we show that viscosity infinite harmonic functions are
unique. In Section 4, we give some potential-theoretic consequences of
the existence-uniqueness. At this point, the first three characterizations
in the Main theorem are proved. In Section 5, we define Grushin cones
and give some of their basic properties as well as complete the proof of
the Main theorem. In Section 6, we delve into the Harnack inequality
and some of its consequences, which include Section 7, where we focus
on the relationship between Grushin cones and the Grushin geometry.
Section 8 shows how comparison with cones produces regularity results.

2. Grushin-type spaces. We begin by recalling the main prop-
erties of a Grushin-type space. For a more thorough discussion, the
interested reader is referred to [2, 5] and the references therein.

We consider R™ with coordinates (z1,2,...,2,) and the vector
fields
0
Xi = pi(z1, 22, . .. awifl)T
(3
for i = 2,3,...,n where p;(z1,22,... ,2;_1) is a (possibly constant)
polynomial. We decree that p; = 1 so that
0
X1
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A quick calculation shows that when 7 < j, the Lie bracket is given by

Opj(®1,22,... ,xj-1) O
(%i 8£Ej.

(21) Xij = [XZ,XJ] = pi(:cl,;cz,.. . 7331',1)

Because the p;s are polynomials, Hormander’s condition is satisfied by
these vector fields. Endowing R™ with an inner product (singular where
the polynomials vanish) so that the X;s are orthonormal produces a
manifold that we shall call g,,. This is the tangent space to a generalized
Grushin-type space G,. Points in G,, will also be denoted by p =
(1,%2,...,T,) with a fixed point denoted pg = (z9,29,...,22). In
addition, we write p — po for (21 — 29,22 — 23,... , 2, — 22) and abuse
notation to write evaluation of the polynomials p; at a point py by
pi(po)-

The Carnot-Carathéodory distance is the natural metric and is de-
fined for the points p and ¢ as follows:

1
o) =inf [ Iy (©llas
0

where the set I is the set of all curves +y such that y(0) = p, v(1) = g and
~'(¢) is in span {{X;(v(¢))}™,}. By Chow’s theorem, see for example
[2], any two points can be connected by such a curve. We are thus
able to define a ball centered at py with radius r, denoted B(po, ), and
Lipschitz functions in the obvious manner using this metric.

The Carnot-Carathéodory metric behaves differently when the poly-
nomials p;(z1,a,...,z;_1) vanish. Fixing a point pg, consider the

n-tuple rp, = (1}, 72, ... ;7 ) Where r} is the minimal length of the

Lie bracket iteration required to produce
|:XJ'1’ |:ij7 |: o |:X]'T‘i 7Xi:| v i| (170) 7é 0.
PO

Clearly, '
pi(po) # 0 «— 1y, =0.
Using [2, Theorem 7.34] we obtain the local estimate at pg

(2_2) p07 Z |$ 0 1/(1+7‘ )
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Given a smooth function f on G,,, we define the horizontal gradient
of f as
Vof(p) = (X1f(p), X2f(p),--. , Xnf(p))

and the symmetrized second order (horizontal) derivative matrix by

(D*F(0))s = 3 (XeX; 1) + X, X, ()

fori,7 =1,2,...n. Using these derivatives, we may define the Sobolev
spaces W1 T and WP for 1 < P < o in the obvious way. We also

loc
have the following definition:

Definition 1. The function f : G, — R is said to be CL, if X;f
is continuous for all 4 = 1,2,... ,n. Similarly, the function f is C2, if
X;X;f(p) is continuous for all 4,5 =1,2,... ,n.

3. Viscosity infinite harmonic functions. Having constructed
Grushin jets in [5], we recall their key properties. Following standard
notation, we denote the Grushin superjet by J?% and the subjet by
J*~. We have the following proposition summarizing the results in [5].

Proposition 3.1. Let u: G, — R, and let Ay, be the set of C2,
functions such that

¢ € Apy <— u— ¢ has a local max at pg.

Then we have the characterization of the Grushin superjets by

J**u(po) = {(Vod(po), (D*¢(p0))*) : ¢ € Apy}

and the characterization of the Grushin subjets by
I3 u(po) = —J*F (—u) (po).

We also note that we define the closure of the superjet, denoted

2+

J 7 u(pg), in the usual way [9].

The following twisting lemma ([5]) allows the Euclidean jets to be
twisted into Grushin jets. This is a key connection between the
Euclidean tools and Grushin-type spaces.
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Lemma 3.2. Let the points p,pp € R™ be denoted by p =
(1, 22,... ,2,) and by po = (29,29,...,2%). Let n € R"™ and X

n
be an n x n symmetric matriz such that (n,X) € 75{;:111(170). Then

(7,Y) € j2’+u(p0) where the vector 7 is defined by
=" pi(po)mX;
i=1

and the symmetric matrix Y is defined by

v — {Pi(PO)pj(pO)Xij +(1/2)(0p;/0zi)(po)pi(po)n; @ < j
i = Yji 1> 7.

Using these jets, we have the following definition.

Definition 2. A lower semi-continuous function v is viscosity infinite

superharmonic in the domain 2 if whenever (n,)) € 72’71)(170) with
po € Q2 we have
_<y777 77> > 0.

An upper semi-continuous function u is a viscosity infinite subharmonic
. =2, .
if whenever (n,X) € J +u(po) with pg € Q we have

—(Xn,n) <O0.

A wiscosity infinite harmonic function is both a viscosity infinite
subharmonic and a viscosity infinite superharmonic function.

In order to prove a comparison principle for these functions, we will
employ the iterated maximum principle, which was proved in [5], and
we will need the following lemma concerning Lipschitz functions.

Lemma 3.3. Let u be an upper semi-continuous function and v a
lower semi-continuous function in the bounded domain 2 so that at
least one of u or v is Lipschitz. Let the points p and q have coordinates
p = (z1,%2,...,2,) and ¢ = (y1,Y2,-.. ,Yn). Define the point (p < q);
by

(poq)i = (151,.’1,'2, cee s Ti—1y Yis Titly e o e axn)-
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That is, (p© q); coincides with q in the ith coordinate and coincides
with p elsewhere. Then there is a finite positive constant K so that

a;(z¢ —yf)? < Kde((po q)i,p).-

Proof. We may assume, without loss of generality, that u is Lipschitz.
By the definition of the points p;z and g5z in the iterated maximum
principle, we have

u(p) — v(q) — va(p,q) < ulpa) — v(ga) — ¢(pa, qa)-
By setting ¢ = g5 and p = (pz © qz); we arrive at
¢a(pa>qa) — pal(pa © 9a)i a) < upa) — u((pa © ga)i)-

By the definition of @5z and the Lipschitz property, we conclude there
is a constant K so that

1
50%(53? —y)? < Kdc(pa, (pa©ga)i)- O

We employ Jensen’s auxiliary functions [11] and follow the outline of
[12]. The first step is the following comparison principle.

Theorem 3.4. Let u be an upper semi-continuous subsolution and
v a lower semi-continuous supersolution to

Fe(n, X) = min{|[n]]* - *, —(Xn,m)} = 0
in a bounded domain Q such that at least one of them is Lipschitz. If

limsup u(q) < liminf v(q)
q—p q—p

when p € 0N), where both sides are not co or —oo simultaneously, then

u(p) < v(p)

for allp € Q.
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Proof. Before beginning the proof, we first note that, as in [3],
we can construct a strict supersolution of F. = 0 called w so that

(n,Y) € jQ’_w(q) produces

F.(n,Y) > p(g) > p>0.

We may therefore assume without loss of generality that v is a
strict supersolution associated with the constant p. We suppose that
supg(u — v) occurs at the interior point py. Because we are using the
iterated maximum principle, we need only to consider interior points
by taking the «; to be sufficiently large. Additionally, we take the «;
sufficiently large so that if p;(po) # 0, then p;(pz) # 0 and p;(gz) # O.
We follow the procedure as in [9]. We have the vectors T, and T,
defined by

a 52)

(Tps)i = pilpa)ai(z —y;
and
(Tas)i = pilaa)ai(zf —yf).
Note that these vectors are the Grushin twist (Lemma 3.2) of the

vectors formed by Euclidean differentiation. Using the construction
of the vectors, we have

1T aall” = 1Tpell®> =D 0F (0} (aa) — £} (pa)) (F — ¥f)®
=1

= a}(p}(qa) — pi (pa)) (zF — y)?
=2

since p; = 1. We now note that every term in the sum lacks an ;.
Using the fact that p; = p;(x1,x2,... ,z;—1), we observe that

a1 —00

lim o3 (p3(gs) — p3(pa))(x§ — y5)* =0
2 2
3 3 Yy

. . 2
lim lim a3(p
Qo —00 (v —> 00

lim  lim -+ lim o2(p(qs) — p2(pa))(zd — y3)* = 0.

Q100 Q2 —>00 a1 —00
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We then are able to conclude that

. . . . 2 2 _
(3.1) Jm  lim e lm o Lim [T ]|" — [Tl = 0.

Turning to the matrices X¥ and Y¥ in the second order Euclidean
jets, we use Lemma 3.2 to construct the matrices X% and Y% by

e { pi(Pa)pi(pa) X (5 + (1/2)(0p; /0x:) (Pa)pi(pa)ey (2§ —yf) 1 < J,

K X5 i>j
and

Vi = pi(9a)pj(9a)Y,T + (1/2)(9p;/0x:)(aa)pi(aa) s (aF —yF) 1 < j,

ij — yﬁ 1> 7.

We then have
a =52+
(TpavX ) eJ u(p&)
and
a —2,+
(Yo, V%) € T ulga)-
Given vectors € and X, the matrices X¥ and Y satisfy the relation [9]
<Xa€7 E>eucl - <Ya’{'7 K>eucl S <CX7 X>euc1
where the vector X = (e, ) and the matrix C is a block matrix of the
form
B -B
-B B
with the submatrix B defined by

Bij:{al—i—aaz v
0 i#£ ]

for a fixed small constant o.
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Using the construction of the matrices, we are able to compute
<XaTPa7 T > - <y&TqQ7TQQ>
§<B(Tpa_rq~) - +ZZO‘J ;i_

j=11i<3

X 8pJ:Pi (Pa)(Tpa)i(Tpa)j — 8[)]/1 (96)(Tqs)i(Tqs);
(o ) (o2

where 'I’j;; is the Grushin twist (Lemma 3.2) of the vector T, see also
[5]. Therefore, the matrix difference can be expressed as

n

D (ai +0207) (0} (pa) — p7 (az)) 0 (2 — yf)?

+ZZO‘ i (2 — i) (2f — yf)?

x(igpflp)( - (9240 ) as)).

Using the fact that p; = 1, we see that the term corresponding to
1 = 1 in the first sum and the terms corresponding to 7 = 1 in the
second sum are zero. Proceeding as in the vector difference estimate,
we observe that the first sum has no «; terms and the construction of
the polynomials again produces

lim (a2 + 02a3)(p3(pa) — p

2
a1 —>00 2
2
3

2
2
lim  lim (a3 + 0203)(p3(pa) — p3(ga))

Qg —>00 (x1 —> 00

lim .- lim (an +0207)(p7 (pa) — 7 (ga)) %07 (2 — ) =0

Qp_1—+00 a1 —00

so that we may conclude that

lim_--- lim Zamﬂa )(P2(pa) — p2(ga))>d (@ — yf)> = 0.

.y, —>00 a1 —00
i=1



738 THOMAS BIESKE

We now turn to the second sum. First, let us consider the term where
j = 2 (which forces i = 1). We note that

(%P%Pz) (pa) — <%pgpz>( &) ~ (@ — i),

and so we obtain

. a G\ (.8 a 0 9
a}lgloo agal(% — 1) (@3 92)2<<6—sz2)(p52) - (8—.ij2> (%2)) =0.

Next, we consider the terms where 7 > 2. We denote

1,y = adaaf (e~ ( (200 ) a) — (05 ) as)).

Since i < j, we can easily control

[=9
-

e . . .
Si; =  lim lim .- lim Tj;
Qj—1—>00 Qtj_2—>00 a1 —>00

through the polynomials since T;; contains only a; and «;. In partic-
ular, by the triangular definition of the polynomials, we have

51y = ades(af o) Poso0)? (32 ) o) (P ) ).

Thus, if p;(po) = 0, then S;; = 0 and

lim lim --- lim S;; =0.
Qp—>00 Q1 —00 a;—00

If pi(po) # O, then by our initial assumption, p;(ps) # 0 and pi(gz) # 0
In particular, ¢ 9 and Y5 9 Jie in a locally Riemannian neighborhood of z¥
Lemma 3.3 and equation (2.2) then can be used to produce a constant
K so that

a;i(zf — y7)? < Kdo(pa, (pa© qa)i) ~ |28 — 7.

Using this estimate, we have

Jim 5 ~ a2y (( 52 s ) v (5220 ) ).
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Again, the definition of the polynomials p; results in

lim lim .- lim S;; =0.
Qj_1—>00 Qj_2—>00 Qi —>00

Combining these results, we have

lim lim .-+ lim lim T;; =0,
Qp—00 Ay 1 —+00 Qg —00 (L] — 00

and so we conclude

lim  lim .-+ lim  lm (X0, Tpo) — (VT g, Tos) = 0.

QU —>00 Ay —1—00 Qg —00 g —00

Because u is a viscosity subsolution at psz and v is a strict viscosity
supersolution at ¢z, we have

F.(Yp,, X%) <0
and

Fo(Yqe, ¥%) 2 1> 0.
We then subtract the two equations to obtain

0<p< FE(Tqmy&) - FE(TP&,XE‘)
= max{||Tq&||2 - ||Tpa‘|2a (XY pss Tpg) = (VT Loa) b

We then arrive at a contradiction via equations (3.1) and (3.2) and
applying the iterated limit. a

Uniqueness of infinite harmonic functions then follows as in [12], pro-
ducing the comparison principle for viscosity infinite harmonic func-
tions. Namely,

Theorem 3.5. Let u be a viscosity infinite subharmonic function,
and let v be a viscosity infinite superharmonic function in a domain Q
such that if p € 09,
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lim sup u(q) < lim sup v(q)
a-p q-p

where both sides are not —oo or +o0o simultaneously. Then u < wv in €.

4. Properties of viscosity infinite harmonic functions. Having
proved the comparison principle, we now present two consequences that
will enable us to prove the Main theorem.

Definition 3. A lower semi-continuous function u : @ — R U {oc}
that is not identically infinity in each component of 2 is potential
superharmonic if for each open set U CC €2 and each viscosity infinite
harmonic function f defined on U,

u>f ondU=u>f inU.

A function w is potential subharmonic if —u is potential superharmonic.
A function u is potential harmonic if it is both potential subharmonic
and superharmonic.

We then have the first consequence of the comparison principle,
namely,

Lemma 4.1. A function u is viscosity infinite subharmonic if and
only if it is potential subharmonic. A function u is viscosity infinite
superharmonic if and only if it is potential superharmonic. A function
1s viscosity infinite harmonic if and only if it is potentially harmonic.

Proof. The last statement follows from the first two. We first prove
the second statement. Suppose u is viscosity infinite superharmonic in
Q. By the comparison principle, if f < w on U, U CC €, then f < u
in U. Thus, u is potential superharmonic.

Suppose u is not viscosity infinite superharmonic. Then, there is
a point pg € Q and a C2, function ¢ so that u(py) = ¢(po) and
u(p) > ¢(p) in a neighborhood of py with

_Am¢(p0) <O0.
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By continuity, this inequality holds in a ball B(pg,r) for sufficiently
small r. Let

= inf — .
m = inf (u(p) - (p))
By lower semi-continuity of the functions and compactness of 9B, we
have m > 0. Define the function

_ m
w:¢+57

and let v be the unique viscosity infinite harmonic function in B with
boundary data . Since 1 is a subsolution in B, we have ¢ < v in B.
In addition, we have u(pg) < ¥(po) so that

u?v in B.

However, by construction, u© > v on 0B, so that u is not potential su-
perharmonic. The proof of the first statement is similar and omitted. O

Next, we recall the definition of absolute minimizers.

Definition 4. The function u € Lip (Q) is an absolute minimizer if
for every V C Q and v € Lip (V), such that u = v on 9V, then

IVoullLes (vy < [IVov|| Lo (vy-

The function u € Lip (£2) is an absolute superminimizer if the above

holds for v > w. The function u € Lip () is an absolute subminimizer
if the above holds for v < u.

It is clear from the definition that an absolute minimizer is both
an absolute subminimizer and absolute superminimizer. The proof
of the converse is given in [1, Section 4.3]. Also, a function u is a
subminimizer exactly when —wu is a super-minimizer. It was shown
in [6] (for C1,) and [15] (for arbitrary) that absolute minimizers
in Grushin-type spaces are viscosity infinite harmonic functions. In
particular, the proof shows that absolute subminimizers are viscosity
infinite subharmonic. We then have the following lemma, whose proof
is similar to that in [13] and omitted.
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Lemma 4.2. Given a domain , let u be an infinite harmonic
function in Q. Then u € VVI})COO and it s an absolute minimaizer with
respect to its trace.

The results of this section can be summarized by the following
theorem, which gives us part of the Main theorem.

Theorem 4.3. Given a domain Q0 and a function u, the following
are equivalent.

(1) u is an absolute minimizer.
(2) u is viscosity infinite harmonic.

(3) w is potential harmonic.
We also have what [1] refers to as “one-sided results.” Namely,

Theorem 4.4. Given a domain Q and an absolute sub (super)-
minimizer u, then u is viscosity sub (super)-harmonic. In addition, u
is viscosity infinite sub (super)-harmonic if and only if it is potential
sub (super)-harmonic.

5. Grushin cones. In this section, we discuss Grushin cones and
extend results found in [1, 13] including the important property of
comparison with cones. This will complete the proof of the Main
theorem. In the Euclidean case, functions enjoying comparison with
cones were shown to be exactly those that were viscosity infinite
harmonic [10], and we extend this result to Grushin-type spaces. We
begin with the definition of Grushin cones.

Definition 5. Let a,b € R. Given a point p and an open set U, we
define the function d : (U \ {p}) — R by

d(q) = a+bdc(p, q).

The Grushin cone based on (U,p) is the unique viscosity infinite
harmonic function wg’f;} in U\ {p} such that

Wiy =d on d(U\ {p})-
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To obtain an upper bound on cones, we state a result of Monti and
Serra-Cassano [14].

Theorem 5.1. Given q € Gy, for almost every p € G,,, we have

IVode(p,q)|| < 1.

Using this theorem, we are able to find bounds for the pointwise
values of Grushin cones via the following proposition.

Proposition 5.2. Given a pair (U,p) and a,b € R, the cone wg’f;}
satisfies

ngf;(q) < a + abs (b) dC(pa q)
Wit (q) > a — abs (b) de(p, q)

for q € U. Here, abs (-) denotes absolute value.

Proof. If p € U, we compute

) b ,b
wi? (@) —a=wp ) (@) — wi,p (9) < IVowps, || e @yde (py @)

However, the cones, as viscosity infinite harmonic functions, are abso-
lute minimizers. Thus,

IVowgollze @) < 16Vodc(p, ) || < abs (b).

We also note that we have
b b b ,b
wi? (@) —a = wi ) (9) — wii, () > = IVows, |l Lo 0y de (p, 9)-
Similarly, we obtain

Wi (q) — a > —abs (b)dc(p, @).

If p ¢ U, let v be the geodesic between p and ¢, and observe that there
is a point ¢’ € AU N . Thus,

de(pyq) =de(p,d') +de(d, q).
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In particular, we have

a,b a,b a,b a,b
wii (@) —a=bdo(p,q') = wii, (@) —wi (@) < [Vow, L w)de (g, 4')-

As above, we then obtain
wiih(@) < a+bdo(p,q') +abs (b)do (g4
< a+abs(b)(dc(p,q) +dc(q,q)).

We also then have

)b _ . ab b b
witp(@)—a—bdc(p,q') = wi?, (0)—wi?, (@) >~ IVowss L= wyde(a, ¢')-

‘We then conclude
W& (q) > a — abs (b)de(p, ') — abs (B)de (q,q)-

The results then follow from our choice of ¢'. o

We are now ready to define the concept of comparison with cones,
analogous to the Euclidean case [10].

Definition 6. Let U C R™ be an open set, and let © : U — R.
Then u enjoys comparison with cones from above in U if for every
open V C U and a,b € R for which

b
< w®
u < wy,

holds on 9(V \ {p}), then we have

a,b
u < Wy p

in V. A similar definition holds for the function u enjoying comparison
with cones from below in U. The function u enjoys comparison with
cones in U exactly when it enjoys comparison with cones from above
and below.

With these definitions, we obtain the following implication.
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Lemma 5.3. A viscosity infinite superharmonic function in U enjoys
comparison with cones from below in U. Similarly, a viscosity infinite
subharmonic function enjoys comparison with cones from above in U
and a viscosity infinite harmonic function enjoys comparison with cones
mU.

Proof. The first and second statements are symmetric and the last
statement follows from the first two. We therefore will consider only the
first statement. Suppose first that u is viscosity infinite superharmonic.
Let w?,:i be a cone so that

wipy <u on 0V \ {p})

for some V' C U. Then, by the comparison principle, Theorem 3.5, we

have
a,b .
Wiy <wu inV.

Thus, u enjoys comparison with cones from below. ]

Next, we focus our attention on functions that enjoy comparison with
cones from above. We will employ results from [1]. However, some of
the proofs must be altered to accommodate for the differences between
Euclidean and Grushin geometry and the lack of an explicit formula
for the Grushin cones. Those differences are highlighted where they
appear.

Proposition 5.4. Let u be an upper semi-continuous function in a
domain U that enjoys comparison with cones from above. For a point
q € U, define the function S(q,r) by

r

S(a,r) = max{“(“’)“(q) : do(w, q) = }

Then, we have
(1) max{u(p) : do(p,q) = r} = max{u(p) : dc(p,q) < 7}

(2) u(p) < u(q)+ S(gq,r)dec(p,q) for points p € U so that do(p,q) < r
with 0 < r < dc(q,0U),
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(3) S(q,r) is monotonic and nonnegative,
(4) u € W (U).

Proof. To prove equation (1), we note that the cone with boundary
data M = max{u(p) : dc(p,q) = r} on B(g,r) is the constant M itself.
Since u < M on 9B(q,r), comparison with cones from above implies

uw<M in B(g,r).

Equation (1) follows. To prove equation (2), we note that it holds when
dc(p,q) = 0 and when de(p, q) = r. Using u(q) + S(q,7)dc(p, q) as the
boundary data for the cone w, we have by comparison with cones from
above that

u(p) < w(p)-

Equation (2) then follows from Proposition 5.2. The proof of state-
ment (3) is identical to Lemma 2.4 of [10] and the proof of statement (4)
is identical to Lemma 2.5 of [10] and therefore omitted. o

In light of the previous proposition, it is reasonable to define the
function S(q) by

S(q) = ﬁi% S(g,r) =1inf{S(g,7): 0 <r < dc(q,0U)}.
In addition, if we let L, (U) denote the smallest constant L so that

lu(p) — u(q)| < L do(p,q)

for p,q € U, then we may define the similar function T, (p) by
T.(p) = liir(l)Lu(B(p,r)) = inf{L,(B(p,7)):0 <7 < dc(p,0U)}.

We note that this is well defined on the extended reals and if u is
Lipschitz, we have

sup Tu(p) = || Voull~.

peU

We then have the following proposition concerning properties of S(q)
and T, (p).
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Proposition 5.5. Let u be as in the previous proposition. Then, we
have

(1) T (p) is upper semi-continuous.
(2) Let p,q € U so that ypq C U where 7ypq is the geodesic between p
and q with vpe(0) = p and Ype(1l) = q. Then,

|u(p) = u(g)] < (max{S(w) : w € ypq})dc (p, ).

Proof. The proof of the first statement can be found in [1, Section
1.5]. The next two statements follow from Lemma 2.15 in [1] and the
fact that in the Grushin environment, we still have

dC (p> Ypq (t)) = tdC (p7 Q)

along the geodesic. o

Lastly, we state a technical lemma, which is Proposition 4.7 of [1].
The proof is omitted.

Lemma 5.6. Let U be bounded, and let w € C(U) enjoy comparison
with cones from above. Let py € U so that S(pg) > 0, and let § > 0.
Then, there is a sequence of points {p;} C U and a point ps, € OU so
that

(1) de(pj pi-1) <6,

)
(2) v;, the geodesic between p; and pj_1 is contained in U,
(3) S(pj) = S(pj-1),

(4) imj 00 Pj = Poos

(5) w(poo) — u(po) > S(po) 5=, de(pjs pi-1)-

We now are able to prove the following theorem.

Theorem 5.7. A function that enjoys comparison with cones from
above is an absolute subminimizer. A function that enjoys comparison
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with cones from below is an absolute superminimizer. A function that
enjoys comparison with cones is an absolute minimizer.

Proof. Again, the last statement follows from the first two, and the
proof of the first two are symmetric, so we shall prove only the first
statement. We suppose that u enjoys comparison with cones from
above and is not an absolute subminimizer in the domain U. Let v be
a Lipschitz function so that v < w in U and v = v on QU. Suppose
that

IVoullLe vy > IVovl Lo (v

This is equivalent to
sup{Ty(p) : p € U} > sup{T,(p) : p € U}.
Thus, there is a pg € U so that

Tu(po) > sup{T,(p) : p € U}.

using the lemmas above, we then have

oo

u(poo) — u(po) > S(po) Z lpj —pj-1|

j=1

oo

= Tu(po) Y Ipj = pj-1l
j=1

> sup{T,(p) : p € U} _ |pj — pj_1l

j=1

> v(p;) = v(pj 1)

v

<

Y

Z(U(Pj) —v(pj-1))

<
[

Il
S

(Poo) — v(po)-

Since po, € OU and v = u on U, we then obtain

u(po) < v(po)
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contradicting the fact that v < w in U. Our supposition is therefore
false, and u is an absolute subminimizer. ]

Combining Theorem 4.3, Theorem 4.4, Lemma 5.3 and Theorem 5.7,
we obtain the following theorem.

Main theorem. Given a domain Q and a function u, the following
are equivalent.

(1) u is an absolute minimizer.

(2) u is viscosity infinite harmonic.
(3) u is potential harmonic.

(4) u enjoys comparison with cones.

In addition, the corresponding “one-sided” statements hold. Namely,
the following are equivalent.

(I) u is an absolute sub (super)-minimizer.
(IT) u 4s viscosity infinite sub (super)-harmonic.
(ITII) w s potential infinite sub (super)-harmonic.
)

(IV) u enjoys comparison with Grushin cones from above (below).

This theorem then provides us with a tool to study the Grushin
distance function. Precisely, we have the following corollary.

Corollary 5.8. Leta,b € R withb > 0. Let U be a domain and p an
arbitrary point. Define the functiond : U — R by d(q) = a+bdc(p,q).
Then d(q) is a viscosity infinite superharmonic function. In particular,
the distance function is a viscosity infinite superharmonic function. By
symmetry, d_(q) = a — b do(p, q) is a viscosity infinite subharmonic
function.

Proof. We will show the function d(q) enjoys comparison with cones
from below. Let U, p,a,b and d(q) be as above. Let wg be the Grushin
cone equal to d(g) on (U \ {p}). Suppose the cone w has the property
that w < d(¢) = wg on OU. Then, by the comparison principle and
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Proposition 5.2,
w<wqg<a+bdc(p,q)=d(q)

in U. O

6. Harnack inequality. Before examining the geometry of Grushin
cones, we will need the Harnack inequality and its consequences for
viscosity infinite harmonic functions in Grushin spaces. The proof of
the following theorem is standard and omitted.

Theorem 6.1. Suppose that u is a nonnegative viscosity infinite
harmonic function in a domain Q. Then for all ¢ € C§°(Q), we have

1¢Volog ull L~ () < IVoCllL=(a)-

Let B(r) and B(R) be concentric balls of radius r and R, respectively.
It is easy to construct a function ¢ so that ¢ =1 on B(r), ¢ = 0 outside
B(R) and ||[V(¢|| < C/(R —r). From Theorem 6.1 we obtain

IV log UHLOO(B(T)) <CR-r.

This implies the following corollary.

Corollary 6.2 (Harnack inequality). Let u be nonnegative viscosity
infinite harmonic in a domain Q). Let B be a ball so that 2B C .
Then, there is a constant C so that

supu < Cinf u.
B B

In particular, we have

Finally, we state immediate consequences of the Harnack inequality.
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Corollary 6.3. The only infinite harmonic functions bounded from
below in the whole Grushin-type space are the constants.

Corollary 6.4 (Strong maximum principle). A nonconstant infinite
harmonic function in a domain Q cannot attain its supremum or
nfimum.

7. Geometry of Grushin cones. In the Euclidean environment, it
is well known ([1, 10]) that the functions d(q) are also viscosity infinite
subharmonic functions and thus the Euclidean cones are exactly those
functions d(q). By symmetry, the restriction that b > 0 can be removed,
and the result holds for all d(q). Due to the richness of the geometry
of Grushin-type spaces, the analogous result in Grushin-type spaces
does not necessarily hold. (For a deeper discussion on the geometry of
certain Grushin-type spaces, see [7, 8] and the references therein.)

We begin with two geometric definitions concerning points in a
domain U.

Definition 7. Let U be a bounded domain, and let p be an arbitrary
point.

(1) A point g € U is geodesically near with respect to the point p if

ge A= { U v :v is a geodesic between p and z}
z€d(U\{p})

(2) A point ¢ € U that is not geodesically near is geodesically far with
respect to the point p. That is, y ¢ A.

(3) A point g € U is boundary near with respect to the point p if there
exists a z € QU so that

do(p,q) < do(p, 2)-

(4) A point ¢ € U that is not boundary near is boundary far with
respect to the point p. That is, for all z € OU, we have

do(p, q) > do(p, 2)-
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[3

We drop the phrase “with respect to p” in these definitions when the
point p is understood.

We first note that, because geodesics need not be unique ([7, 8]), the
set A actually includes all geodesics between points p and z. Points that
are geodesically near with respect to p lie on some geodesic from p to the
boundary point z. Additionally, it is clear that geodesically near implies
boundary near, or equivalently, boundary far implies geodesically far.
We next note that, unlike the Euclidean case, interior points need not
be geodesically near.

We first consider cones with constant boundary data. In the case
when b = 0, we have w4(q) = d(q) = a for all points ¢ in any bounded
domain U. In the case when b > 0, the constant boundary data and
uniqueness of the cones produces the constant cone wy;. We have the
following theorem concerning constant Grushin cones when b > 0.

Theorem 7.1. Let U be a bounded domain and a,b € R with
b > 0. Define d(q) = a +b de(p,q) as above. Suppose d(z) = K
for z € O(U \ {p}) for some constant K. Let wq be the (constant)
Grushin cone with boundary data K. Then the point q¢ € U is boundary
far with respect to p exactly when wq(q) < d(q).

Proof. Suppose that ¢ is a boundary far with respect to p. Because
q is an interior point to U \ {p}, there is an » > 0 so that the ball
B(g,7) C (U\ {p}). Let v be a geodesic from p to q. Then, there is a
point p € (B(q,r) \ {¢}) N~y with the property

dC(pa q) = dc(p,ﬁ) + dC(ﬁa q)

Using this property, we see that d(q) > d(p). Suppose that wq(q) =
d(q). We would then have

d(q) = wa(q) = K = wa(p) < d(p) < d(q).

We note that the penultimate inequality is a consequence of Proposi-
tion 5.2 and therefore conclude that wy(q) < d(q).

Suppose next that wg(g) < d(g). Then by Proposition 5.2, we have
K = wa(q) < d(q)-



GRUSHIN INFINITE HARMONIC PROPERTIES 753

That is, for any z € 9(U \ {p}),
a+bdo(p,z) < a+bde(p,q).

Because b > 0, we conclude that ¢ is a boundary far with respect to
p. O

The case of nonconstant cones is more involved. We have the
following partial result that parallels the constant case.

Theorem 7.2. Let U,p, a,b be as in Theorem 7.1. Suppose that d(z)
is nonconstant on O(U \ {p}), and let wy be the (nonconstant) Grushin
cone with boundary data d(z). Then we have the implications

q s boundary far with respect to p =
wd(q) < d(q) = q 1is geodesically far with respect to p.

Proof. We first observe that as a nonconstant (continuous) infinite
harmonic function on a compact set, we have that wy achieves its
maximum on U, and by Corollary 6.4, this maximum occurs only on
the boundary.

Now assume that ¢ is boundary far. Suppose wgi(q) = d(q). Because
q is boundary far and b > 0, for all z € 9(U \ {p}) we have d(q) > d(z).
That is,

wa(q) = wa(z)

for all z € (U \ {p}). This contradicts the fact that the maximum of
wq occurs only on the boundary. We conclude that wq(q) < d(g).

The contrapositive of the second assertion is an observation in Sec-
tion 1.4 of [1]. O

Ideally, we would like to prove both converse implications of the
above theorem. This, however, is not possible, since if both converse
statements are true, we would have proved that all geodesically far
points are boundary far, which is not necessarily the case in an arbitrary
sub-Riemannian space. For example, the unit ball in the Heisenberg
group has points that are geodesically far with respect to the center,



754 THOMAS BIESKE

but these points are not boundary far. We conclude that the converse
statements are not necessarily both true. We have the following lemma
that partially addresses this issue.

Lemma 7.3. Let U p,a,b,d(q) and wi(q) be as in Theorem 7.2.
Additionally, suppose U has points that are boundary far with respect
to p and points that are boundary near with respect to p. Then there
exists a point ¢ € U that is boundary near with wq(q) < d(q). Thus,
wq(g) < d(q) does not necessarily imply that g is boundary far.

Proof. Suppose that wgy(q) < d(q) implies g is boundary far. Then
the logically equivalent implication that ¢ is boundary near implies
wdq(q) = d(q) would be true. We will show, however, that the latter
implication is false.

By the continuity of the distance function, we may construct a
sequence {¢, }nen of points in U that are boundary near with respect
to p and converge to the point ¢ € U that is boundary far with respect
to p. By our assumption, we have wq(gy,) = d(gy,). By continuity of the
cone function, this implies wy(q) = d(q). However, ¢ is boundary far,
and so Theorem 7.2, which showed that w4(q) < d(q), is contradicted. O

It is an open problem as to whether this geometric condition com-
pletely characterizes all domains where wq(g) < d(g) does not neces-
sarily imply that ¢ is boundary far. It is also an open problem to
completely characterize the conditions under which wy(q) = d(q) im-
plies q is geodesically near with respect to p and completely characterize
the conditions under which wq(q) < d(q) implies q is boundary far with
respect to p.

8. Regularity. As in the Euclidean environment, the technique
of comparison with cones can be used to prove regularity results. In
Lemma 4.2, we addressed the issue of a viscosity infinite harmonic func-
tion u being locally Lipschitz, but did not have results for viscosity in-
finite subharmonic functions and viscosity infinite superharmonic func-
tions. Using Proposition 5.4, we conclude that viscosity infinite sub-
harmonic and superharmonic functions are locally Lipschitz. We may



GRUSHIN INFINITE HARMONIC PROPERTIES 755

also expand Jensen’s [11] proof of interior regularity to give us a bound
for the Lipschitz constant, namely,

Lemma 8.1. Let u be a viscosity infinite subharmonic function in
Q. Then u is locally Lipschitz and for almost every p € €}, we have the
bound

cCM

||V0u(p)|| < m

where M = ||ul|p(q) and C is a constant independent of w.

The following corollary has a proof based on the fact that u is a
viscosity infinite subharmonic function exactly when —u is a viscosity
infinite superharmonic function.

Corollary 8.2. Let u be a viscosity infinite superharmonic function
in Q. Then u is locally Lipschitz and for almost every p € 2, we have
the bound

cCM

[Vou(p)|| < m

where M = ||ul|p~(q) and C is a constant independent of u.

The fact that viscosity infinite subharmonic functions and viscosity
infinite superharmonic functions are locally Lipschitz allows us to state
the following result, whose proof is a straightforward extension of
Jensen’s Euclidean proof [11].

Lemma 8.3. Given 0 € C(09), there is a unique absolute minimizer
of 8 into Q. In addition, the absolute minimizer is infinite harmonic.
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