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Abstract: Although most antibiotics do not need metal ions for their biological activities, there are a

number of antibiotics that require metal ions to function properly, such as bleomycin (BLM),

streptonigrin (SN), and bacitracin. The coordinated metal ions in these antibiotics play an important

role in maintaining proper structure and/or function of these antibiotics. Removal of the metal ions

from these antibiotics can cause changes in structure and/or function of these antibiotics. Similar to

the case of ‘‘metalloproteins,’’ these antibiotics are dubbed ‘‘metalloantibiotics’’ which are the title

subjects of this review. Metalloantibiotics can interact with several different kinds of biomolecules,

including DNA, RNA, proteins, receptors, and lipids, rendering their unique and specific

bioactivities. In addition to the microbial-originated metalloantibiotics, many metalloantibiotic

derivatives and metal complexes of synthetic ligands also show antibacterial, antiviral, and anti-

neoplastic activities which are also briefly discussed to provide a broad sense of the term

‘‘metalloantibiotics.’’ � 2003 Wiley Periodicals, Inc. Med Res Rev, 23, No. 6, 697–762, 2003
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1 . I N T R O D U C T I O N

Antibiotics can interact with a variety of biomolecules, which may result in inhibition of the

biochemical or biophysical processes associated with the biomolecules. This can be illustrated in the

interaction of the peptide antibiotic polymyxin with glycolipids which affects membrane function,1 in

the intercalation of the anthracyclines (ACs) into DNA base pairs which stops gene replication,2 in the
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imbedding of the lipophilic antibiotic gramicidin3 and the insertion of the amphiphilic antibiotic

protein colicin A into cell membrane4 which disturb normal ion transport and trans-membrane

potential of cells, in the inhibition of transpeptidase by penicillin which affects cell wall synthesis,5

and the inhibition of aminopeptidase by bestatin, amastatin, and puromycin which impairs many

significant biochemical processes.6 While most antibiotics do not need metal ions for their biological

activities, there are several families of antibiotics that require metal ions to function properly. In

some cases, metal ions are bound tightly and are integral parts of the structure and function of the

antibiotics. Removal of the metal ions thus results in deactivation and/or change in structure of these

antibiotics, such as bacitracin, bleomycin (BLM), streptonigrin (SN), and albomycin. In other cases,

the binding of metal ions to the antibiotic molecules may engender profound chemical and

biochemical consequence, which may not significantly affect the structure of the drugs, such as

tetracyclines (TCs), ACs, aureolic acids, and quinolones. Similar to the case of ‘‘metalloproteins,’’

these families of antibiotics are thus dubbed ‘‘metalloantibiotics’’ in our studies and are the title

subjects of this review.

The term ‘‘antibiotic’’ was originally coined by Selman A. Waksman and was used in the title of a

book of his, Microbial Antagonisms and Antibiotic Substances published in 1945, and was defined as

‘‘ . . . produced by microorganisms and which possess the property of inhibiting the growth and even

of destroying other microorganisms.’’7 However, many clinically useful ‘‘antibiotic drugs’’ nowadays

are either synthetic or semi-synthetic, including many b-lactams, (fluoro)quinolones, and amino-

glycosides. These (semi-)synthetic drugs and many synthetic metal complexes and organometallic

compounds that exhibit ‘‘antibiotic activities’’ can be considered ‘‘synthetic antibiotics’’ as the

counterparts of the originally defined ‘‘microbial-originated antibiotics’’ from a broad sense of the

term. In this review, we focus on those nature-occurring metalloantibiotics and also briefly discuss a

few synthetic metalloantibiotics to provide a broader view of the term ‘‘metalloantibiotics.’’ The

structures and anti-microbial, anti-viral, and/or anti-cancer activities of these natural and synthetic

metalloantibiotics will be discussed to provide further insight into their structure–function

relationship.

Metal ions play a key role in the actions of synthetic and natural metalloantibiotics, and are

involved in specific interactions of these antibiotics with proteins, membranes, nucleic acids, and

other biomolecules. For example, the binding of Fe/Co–BLM, Fe/Cu–SN, Mg–quinolone, Mg–

quinobenzoxazine, Mg–aureolic acid, and cisplatin with DNA impairs DNA function or results in

DNA cleavage (Section 2); the involvement of Mg/Fe in the binding of TCs to the regulatory TetR

protein turns on the mechanism for bacterial resistance to TCs (Section 3); the binding of

metallobacitracin to undecaisoprenyl pyrophosphate prohibits the recycling of the pyrophosphate to

phosphate which in turn inhibits cell wall synthesis (Section 4); and the binding of metal ions to

ionophores or siderophores allows their transport through cell membrane which can cause disruption

of the potential across the membrane, enables microorganisms to acquire essential iron from the

environment, or delivers antibiotics to foreign microorganisms (Section 5). The structural and

functional roles of metal ions in metalloantibiotics have been further advanced in recent years from

extensive biological, biochemical, and physical studies,8 which are discussed herein to provide an

overview of this important and unique group of antibiotics.

2 . D N A - B I N D I N G M E T A L L O A N T I B I O T I C S

DNA can bind many different biomolecules and synthetic compounds, including proteins, antibiotics,

polyamines, and synthetic metal complexes and organometallic compounds.9 In the case of the very

specific protein–DNA interaction, transcription is regulated to turn on or off a specific biological

process. DNA is also a target for therapeutic treatment of disorders and diseases, such as cancers, via

direct ligand binding to it or binding to DNA-regulating biomolecules which in turn imparts DNA

698 * MING



function indirectly. Several clinically used anti-cancer antibiotics, such as BLM and the ACs, are

DNA-binding (and cleaving) agents. A better understanding of the structure of these antibiotics and

their DNA complexes, and a better understanding of the relationship of structure, function, and

toxicity of these drugs can provide information for the design of more effective but less toxic drugs for

therapeutic treatments. The investigation of the interaction between DNA and synthetic compounds

or metal complexes can also further our understanding of DNA–ligand binding specificity which

would provide clues for rational design of DNA-specific drug in the future.10 The structure and

function of a few natural and synthetic DNA-targeting metalloantibiotics are discussed in this section.

A. Bleomycin

Bleomycin (BLM, also known as Blenoxane) was first isolated as a Cu2þ-containing glyco-

oligopeptide antibiotic from the culture medium of Streptomyces verticullus,11 and was later found to

be also an antiviral agent.12 It was soon found to be an anticancer agent and has ever since become one

of the most widely used anticancer drugs,13 most commonly used in treatment of testis cancer,

lymphomas, and head and neck cancer, as well as the AIDS-related Kaposi’s sarcoma in combination

with cisplatin and adriamycin. However, it can cause life-threatening side effect, including lung

fibrosis. BLM contains a few uncommon amino acids, such as b-aminoalanine, b-hydroxyhistidine,

and methylvalerate, two sugars (gulose and mannose), a few potential metal-binding function-

alities such as imidazole, pyrimidine, amido, and amino groups, and a peptidyl bithiazole chain

considered to be the DNA recognition site (Fig. 1). Similar to many other nature products, BLM is

produced as a mixture of several analogues with BLM A2 and B2 being the most abundant.11 BLM is

the most extensively studied metalloantibiotic from several different view points, such as its metal

binding property, structural studies with a variety of spectroscopic methods, mechanistic study of its

oxidative DNA cleavage, investigation of its structure–function relationship, and its use as a non-

heme model for investigation of dioxygen activation and DNA recognition/cleavage.14 There are a

few BLM-like antibiotics which exhibit similar physical, structural, and biochemical characteristics

as BLM, which have been previously reviewed.15

1. DNA/RNA Binding and Cleavage

The antibiotic mechanism of BLM has been proposed on the basis of the results from the better studied

Fe and Co derivatives (however, it is the Fe form that is considered the active form in vivo because of

its higher abundance in the biological systems).14 In the presence of reducing agents, the metal ion in

Fe2þ- or Co2þ-BLM binds dioxygen and converts into an ‘‘activated form’’ HOO-MIII-BLM probably

Figure 1. Schematic structureof bleomycin (BLM)A2 andB2.Theproposedmetal-bindingligandsbasedonspectroscopic studies
are inbold-phase.
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via an superoxide-MIII-BLM intermediate. DNA cleavage by Fe–BLM is proposed to be carried out

by the active O = FeV–BLM or O = FeIV–BLM species generated by O–O bond cleavage in the

activated form14,16 via oxidation at C4 0 and C2 0–H proton abstraction from the deoxyribose of DNA

immediately following 5 0GC and 5 0GT sequences.14f,17 The damaged deoxyribose then breaks down,

and cleavage of DNA strand occurs. The mechanism for DNA cleavage by Co–BLM has been

suggested to follow a similar mechanism via photo-activation.18 Recent studies indicated that the

sequence GTAC is a hot spot for double-stranded DNA cleavage by Fe–BLM at site T.19 The sugar

moiety of BLM is important in determining the specificity of the cleavage since Fe–BLM and

deglycosylated Fe–BLM were reported to cleave d(CGCTAGCG)2 at different sites.20 In the presence

of H2O2, Fe3þ–BLM generates hydroxyl �OH free radical in the vicinity of DNAwhich is expected to

cause DNA cleavage in vivo.21 More detailed discussion on the mechanism of DNA cleavage14 and

associated cytotoxicity22 can be found in the cited review articles.

Several studies indicate that Fe2þ–BLM can also bind and cleave RNA molecules,23 including

tRNA and its precursors and rRNA.24 The cleavage occurs mainly at the junctions between double-

stranded and single-stranded regions in RNA molecules,25 such as at C26 and A32 in E. coli

tRNA1
His.25d However, not all RNA molecules can be cleaved by Fe2þ–BLM, which include E. coli

tRNATyr and tRNACys.25 These studies reveal that RNA cleavage by Fe2þ–BLM shows much higher

selectivity as opposed to DNA cleavage that occurs at all 5 0GC and 5 0GT sites. Another significant

difference is that the rate for RNA cleavage is significantly slowed in the presence of Mg2þ and

abolished at 0.5 mM (but not in DNA cleavage at even 50 mM25a), which has been attributed to

stabilization of RNA structure by this metal ion.25d It is interesting to note that a DNA molecule

analogous to the T-stem loop of yeast tRNAPhe is cleaved by Fe2þ–BLM at 5 0GT site as in the case of

normal DNA cleavage, whereas the yeast tRNAPhe loop is cleaved at G53 after the corresponding GU

sequence with a rate 16-times slower.25a Fe2þ–BLM can cleave DNA–RNA hybrids as well.23b,26

However, the cleavage sites on the RNA strand are different from that of the RNA alone, and is

inhibited at slightly higher Mg2þ concentrations equal or greater than 1 mM. In the meantime, the

DNA strand in the hybrids is cleaved at all 5 0GT sequences and 5 0GC sequences to a less extent,

similar to a regular double-stranded DNA.26b

2. Metal Binding and Coordination Chemistry

BLM was originally isolated as a Cu2þ complex which has since been extensively studied.11 It has

also been known to be an excellent ligand for binding with several different metal ions,27 including

Mn2þ,28 Fe2þ /3þ,29 Co2þ /3þ,30 Ni2þ /3þ,31,32 Cuþ /2þ,33,34 Zn2þ,33 Cd2þ,35 Ga3þ,36 and Ru2þ 37 ions

as well as the radioactive 105Rh for use in radiotherapy.38 The d–d transitions of the Cu2þ complexes

of BLM and analogues are detected at �600 nm with a molar absorptivity �110 M�1 cm�1. The

energy of the d–d absorption is higher than those of many ‘‘type 2’’ Cu2þ centers in the range of 650–

750 nm, suggesting the presence of a strong ligand-field in a distorted 5- or 6-coordination sphere.39

The metal coordination became clear after the structure of a Cu2þ complex of a biosynthetic

intermediate of BLM was determined with crystallography.40 This intermediate contains all the

metal-binding moieties, but lacks the sugars and the peptidyl bithiazole moiety. In this complex,

the Cu2þ is bound to the ligand via imidazole, pyrimidine, the amines of b-aminoalamine, and the

amide nitrogen of b-hydroxyhistidine.

The identification of nitrogen-containing ligands in Cu2þ , Co2þ , and Fe3þ–BLM complexes has

also been achieved by means of electron spin-echo envelope spectroscopy through the detection of 14N

hyperfine coupling.41 This metal-binding mode has been considered to be conserved in Fe2þ–BLM. A

previous observation of a perturbation on the ligand field and ligand-to-metal charge transfer

transition bands in a few BLM congeners suggested the presence of an axial ligand which might be

exchangeable.42 A later nuclear magnetic resonance (NMR) study of the diamagnetic CO adduct of

Fe2þ–BLM suggested a similar metal binding site as previously determined, except that the amide
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group of a-D-mannose was considered to be involved in metal binding.43 Despite the disagreement, a

structure of the metal center with five coordinated ligands in a distorted octahedral geometry has

emerged which leaves an open coordination site or an exchangeable site for oxygen binding.

3. Zn2þ and Co2þ /3þ Complexes and Their DNA Binding

The diamagnetic Zn2þ–BLM complex of BLM has been utilized as a structural model for the

paramagnetic Fe2þ–BLM complex owing to the difficulty in high-resolution NMR studies of the

paramagnetic species. Previous 2D-NMR studies of Zn–BLM strongly suggested that the metal is

bound to BLM through the secondary amine of b-aminoalanine, the amido-N and imidazole of b-

hydroxy histidine, pyrimidine, and the carbamoyl group of mannose.44 This coordination chemistry

of Zn–BLM has been suggested to be similar to that of the diamagnetic CO complex of Fe2þ–BLM

based on NMR studies.43 However, this metal coordination has recently been challenged by an NMR

study of an analogous complex Zn–tallysomycin,45 in which five N-containing donors are suggested,

including the primary amines ofb-amino-Ala, pyrimidine, and the peptidyl amide and imidazole ofb-

(OH)His with the pyrimidine at the apex and an SS chirality. This study also excludes the binding of

the carbamoyl group. Instead, the disaccharide covers the sixth binding site. This disagreement in

axial binding has also been raised in the study of HOO–Co3þ complexes of BLM and analogues

discussed below.

BLM forms a complex with Co2þ under anaerobic conditions at pH 6.8, which exhibits a nearly

axial electron paramagnetic resonance (EPR) spectrum with g? ¼ 2.272 and g// ¼ 2.025 and shows a

large hyperfine coupling of A// ¼ 92.5 G attributed to the 59Co nucleus of I ¼ 7/2 and three

superhyperfine-coupled lines of 13 G because of coupling with one 14N (I ¼ 1).46 The sharp EPR

features of this complex at 77 K with g �2 and g?> g// reflect the presence of a low-spin Co2þ center

of S ¼ 1/2 with the unpaired electron in the dz2 orbital overlapping with one N-containing ligand,

since a high-spin Co2þ center of S ¼ 3/2 can only be observed at liquid He temperatures (and

showing g �2 and �4 features) because of its fast electron relaxation rates.47 The observation of a

low-spin Co2þ center also concludes the presence of a strong ligand field as suggested based on the

electronic spectrum of Cu2þ–BLM above. Upon oxygen binding at 77 K, the EPR spectrum is

dramatically changed to give g// ¼ 2.098 and g? ¼ 2.007 and a very small hyperfine coupling with
59Co of A// ¼ 20.2 G. The similar g values of�2 and the small coupling with the 59Co center strongly

suggest that the unpaired electron density is not located at the Co2þ center, but very possibly on the

bound oxygen, i.e., a ligand-centered EPR spectrum.46a The study of Co2þ binding of the less active

deamido-BLM by means of EPR revealed that the fifth ligand is the amino group of b-amino-Ala.

Upon the introduction of DNA, the spectrum of Co2þ–BLM is not changed whereas the spectrum of

oxy-Co2þ–BLM is noticeably changed to give g// ¼ 2.106, g? ¼ 2.004, and A// ¼ 18.9 G.46 This

spectral change indicates that the binding of BLM to DNA via the bithiazole rings should affect the

orientation of the bound O2 molecule where the unpaired electron resides.

The Co2þ in Co2þ–BLM can form an activated ‘‘green species’’ HOO–Co3þ–BLM and an

inactive ‘‘brown species’’ H2O–Co3þ–BLM upon treatment with peroxide.48 These low-spin

diamagnetic Co3þ complexes of BLM and analogues have been extensively studied by means of 2D-

NMR spectroscopy.49,50 The coordination chemistry of BLM has further been established from these

studies (Fig. 2A). The overall structure is similar to that revealed in the crystallographic study of the

Cu2þ complex of the BLM bio-intermediate,40 despite the lack of consensus regarding the axial

ligands49,50 (i.e., alanyl-NH2 vs. mannose-CO–NH2 binding).

These Co3þ complexes can bind double-stranded DNA to form DNA2–Co3þ–BLM and

DNA2–(HOO)Co3þ–BLM ternary complexes. Several ternary complexes have been investigated by

means of 2D-NMR techniques, and their structures determined.51,52 A representative structure of

the ternary complex (CGTACG)2–Co3þ –(OOH)–deglycopepleomycin is shown in Figure 2. The

coordination chemistry of the Co3þ–deglycopepleomycin complex in the ternary complex is very
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similar to that of the DNA-free complex; however, the peptidyl bithiazole tail is pointed away from the

metal center (Fig. 2A). The metal coordinated moiety is sitting in the minor groove of DNA duplex,

and the bithiazole rings are found to interact with DNA double helix via intercalation which exposes

the bound peroxide to the DNA. This intercalation binding mode was also observed in the binding of

metal-free BLM to calf thymus DNA by means of low-frequency Raman spectroscopy.53 The binding

of these Co3þ complexes to DNA has brought the terminal oxygen of the Co3þ-bound peroxide

close to the 4 0-H of the scissile ribose (<3 Å), and has also resulted in several specific perturbations

on the DNA structure. For example, in the case of d(CCAGTACTGG)2–(HOO)Co3þ–BLM,51a the

bithiazole rings intercalate into the base pairs between T5
*A and A6

*T and the configuration of the

T5–A6 riboses and the region C2 through C4 are found to deviate from B-form configuration.

The bithiazole was observed to span in the minor groove in the case of Zn2þ–BLM–DNA,54

different from the intercalation binding mode in the Co3þ–pepleomycin–DNA complex.52 This

groove-binding mode was suggested to be probably the initial binding of the metal–BLM complex

with DNA, prior to the more specific binding at 5 0-GC or 5 0-GT sequences (and intercalating into the

base pairs next to the sequences).52 However, intercalation has been suggested not necessarily a

required interaction for DNA cleavage in a study wherein the bithiazole terminus of Fe–BLM is

tethered to a porous glass bead, which shows similar efficacy in DNA cleavage as free Fe–BLM

in solution.55

The importance of the lesion of one strand and the role of the bithiazole in the cleavage

mechanism of double-stranded DNA have recently been very elegantly investigated. The binding of

HOO-Co3þ–BLM to a double-stranded DNA with a lesion site was studied and structure determined

with 2D-NMR.56 This DNA has the sequence d(5 0-CCAAAG6 _ A8CTGGG)*d(5 0-CCCAG-

T19ACTTTGG), in which the underlined site has a 3 0-phosphoglycolate lesion next to 5 0-phosphato

moiety and this ‘‘cleaved strand’’ is connected to the other strand of a complementary sequence (with

Figure 2. Top: The superimposed structures of the activated ‘‘green species’’ HOO-Co
3þ
-deglycopepleomycin (green ball-and-

stick structure; Protein Data Bank ID1A02) and the complex upon binding with d(CGTACG)2 (red stick structure without showing

the oligonucleotide) and (bottom) deglycopepleomycin-Co
3þ

(OOH)-(CGTACG)2 derived from NMR studies and molecular

dynamic calculations (Protein Data Bank ID1A01.pdf).The Co
3þ

^deglycopepleomycin complex is shown in red color,DNA in gray,

Co
3þ

inpink, and themetal-boundperoxide inblue.
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the corresponding lesion site occupied by an A) via two 5 0-3 0 hexaethylene glycol linkers. The metal-

binding domain of Co3þ–BLM is located in the minor groove in close proximity of T19 and the

bithiazole is most likely to partially intercalate between T19 and A20 according to nuclear Overhauser

effect interactions (NOE, which is a function of the molecular rotational correlation time and inter-

nuclear distance57). The structural model derived from this study suggests that the metal center

interacts with G on the second strand at the 5 0 end of the cleaved site on the first strand as well as a

reorientation of the bithiazole rings upon cleavage of the first strand.

4. Paramagnetic Fe2þ /3þ Complexes

The binding of Fe3þ to BLM at slightly alkaline conditions forms a low-spin complex of S ¼ 1/2

(g ¼ 2.41, 2.18, and 1.89),58 in which the sixth position is occupied by a hydroxide based on

resonance Raman spectroscopy.59 An oxy-form of Fe–BLM is formed by introducing dioxygen to

Fe2þ–BLM in the absence of reducing agent and DNA. This oxy form has been determined to be a

superoxide O2
�–Fe3þ–BLM complex based on its 57Fe Mössbauer spectrum.60 In the presence of a

reducing agent, the activated hydroperoxide HOO�–Fe–BLM complex is formed which is the active

species for DNA cleavage.58b A recent theoretical study suggested that both heterolytic and hemolytic

cleavage of the O–O bond in the active peroxo complex are not favorable based on energetics and

reaction specificity, which concludes a direct attack on DNA by the hydroperoxide of the active

complex.61

The Fe2þ–BLM complex is paramagnetic (S ¼ 2), which has been studied by means of NMR

techniques.62,63 In paramagnetic metal complexes, the NMR signals of nuclei near the metal center

can be hyperfine-shifted outside the ‘‘regular’’ spectral range (i.e., �13 ppm for 1H-NMR and

�200 ppm for 13C-NMR) by the unpaired electron(s) to afford a large spectral window that may reach

more than 100 ppm for 1H-NMR. In the meantime, the nuclear relaxation times are dramatically

shortened which are proportional to the sixth power of metal-nucleus distances.64 This paramagnetic

complex exhibits many hyperfine-shifted 1H-NMR signals in a spectral window of 230 ppm (Fig. 3),

which have been assigned to the protons of the coordinated ligands or the protons near the metal by the

use of 1D- and 2D-NMR techniques.63 A structural model of this metal complex has been built by the

use of the distance-dependent nuclear relaxation times as constraints. This structural model turns out

to be similar to the structural models built on the basis of the Co3þ–BLM complexes and their ternary

complex with the oligonucleotide duplex discussed above. The Fe2þ complex of a BLM congener

peplomycin and its derivatives have been studied with X-ray absorption spectroscopy which reveals

that an axial ligand may affect the Fe(II) dp! pyrimidine back-bonding as previously observed42

which may stabilize the superoxide intermediate, consistent with the auto-oxidation rate of the metal

center in the complexes.65

A recent 1H-NMR study of the paramagnetic Co2þ–BLM complex at pH 6.566 corroborates the

metal coordination chemistry obtained in the Fe2þ–BLM study.63 A possible involvement of

mannose-amido group as the sixth ligand was proposed. Co2þ–BLM at slightly higher pH of 6.8 was

previously determined by means of EPR to have a low-spin Co2þ center,46 which would exhibit only

broad hyperfine-shifted 1H-NMR features.64 The observation of sharp 1NMR features in Co2þ–BLM

Figure 3. Hyperfine-shifted1
H-NMRspectrumofhigh-spinFe

2þ
^BLMinD2OatpHmeter readingof 6.5.Theshiftedsignalsoutside

the regular 0^10 ppmwindowarebecause ofprotons incloseproximityof theparamagnetic Fe
2þ

ion.
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reflects the presence of a fast-relaxing high-spin Co2þ center. The NMR and EPR studies suggest a

possible presence of a high-spin to low-spin transition that is controlled by pH. However, this

hypothesis cannot be verified because of the lack of cross investigations of the complex at lower pH

with EPR at liquid He temperatures and the complex at higher pH with NMR in these studies.

5. Synthetic Analogues and Biosynthesis

A number of BLM-analogous compounds have been synthesized that contain the metal binding

moieties of BLM.67–69 These synthetic analogues form complexes with several metal ions, including

Cu2þ and Fe2þ/3þ , and are able to cleave DNA molecules similar to the cleavage pattern by BLM

complexes. A recent revisit of the Fe–BLM mimicking complex Fe–PMAH67c (PMAH ¼ 2-[N-

(aminoethyl)amino)methyl]-4-[N-[2-(4-imidazolyl)ethyl]carbamoyl]-5-bromopyrimidine) showed

that HOO–Fe3þ–PMA (with low-spin features of g ¼ 2.22, 2.17, and 1.94 and a noticeable high-

spin feature at g ¼ 4.3) can be formed by reacting Fe3þ–PMA with H2O2, but not with iodosyl-

benzene and a base that was previously reported.67c This result is consistent with the observation in an

early study of Fe3þ–BLM.70

Several lipophilic ligands analogous to the metal-binding moiety of BLM have been synthesized

that comprise a 4-alkoxypyridine with methylhistamine or methylethylenediamine moiety and a long

hydrocarbon chain in the alkoxy moiety for the lipophilicity.71 These ligands bind Cu2þ and form

micelles with critical micelle concentration in the range of 0.9–1.4� 10�4 M. The catalytic

properties of these complexes were not tested in this study. Some pyridine-containing BLM analogues

were synthesized, and investigated with spectroscopic and crystallographic techniques.72 The lmax of

�650 nm of Cu2þ complexes is significantly longer than that of Cu2þ–BLM11 which indicates a

weaker ligand field in the complexes of these analogues, whereas the g values of 2.21–2.22 and 2.04–

2.05 of these complexes are close to those of Cu2þ–BLM and its analogues (�2.21–2.25 and �2.06)

which suggests the presence of a similar axially symmetric magnetic environment of the Cu2þ center

in these complexes.27

BLM is a natural peptide–ketide hybrid (Fig. 1), like the cyanobacterial hepatotoxins such as

cylindrospermopsin. The biosyntheses of many peptides and polyketides and their hybrid conjugates

(including a number of antibiotics such as BLM, ACs, bacitracin, and some ionophore antibiotics)

follow a nonribosomal pathway catalyzed by large clusters of peptide and ketide synthases/

synthetases and peptide/ketide ‘‘hybrid’’ synthetases, respectively.73,74 The genes of the synthases/

synthetases of peptides and polyketides from microorganisms have recently been analyzed and

cloned and the enzymes further studied,73–75 including those of BLM and bacitracin (Section 4).

BLM has been verified to be produced by synthetase clusters comprised of polyketide synthase and

peptide synthetase modules.76 These peptide and polyketide synthetases are comprised of a multi-

domain modular structure for the catalysis of the initiation of the synthesis via ATP-activating

formation of thioester linkage to the enzyme, elongation mediated by condensation of the thioester-

linked amino acid and/or peptide on the peptide carrier domain following a mechanism not yet fully

understood, and termination of the peptide or polyketide chain by a thioesterase domain via transfer of

the final product to a serine in the thioesterase followed by hydrolysis.77 The reactant amino acids or

carboxylates are specifically recognized and covalently linked to the different domains before

transferred to an intermediate peptide or polyketide chain. Changing of the stereochemistry is carried

out by epimerization domains in the enzyme complex. The studies of several peptide and polyketide

synthetases and their hybrids, including crystallographic studies of the adenylation domain and an

NMR study of a peptidyl carrier domain,78 have greatly enhanced our understanding of the structure

and mechanism of this superfamily of ‘‘mega enzymes.’’ Since these synthetase complexes possess

enzymatic activities toward the syntheses of secondary metabolites,75 thus are potential targets for

drug discovery in the production of potential bio-active peptides and polyketide as well as their

hybrids.79
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B. Aureolic Acids

The glyco-antibiotic aureolic acid family produced by Streptomyces species is comprised of several

members with similar structures, including chromomycin A3 (ChrA3), mithramycin (Mit, produced

by S. plicatus and also known as plicamycin), olivomycin, and variamycin, which exhibit activities

toward Gram-positive bacteria, DNA viruses, and tumors.80 However, high toxicity has limited their

use as clinical antibiotics and anti-tumor agents. Mithramycin has been tested against several

malignant diseases since its discovery,81 and has a limited use for the treatment of the Paget’s

disease82 and for the treatment of hypercalcemia83 (however, controversies have also raised84). Both

ChrA3 and Mit have recently been found to be potent inhibitors of neuronal apoptosis induced by

oxidative stress and DNA damage in cortical neurons.85 Thus, these antibiotics may be effective

agents for the treatment of apoptosis-associated neurological diseases, which suggests that sequence-

selective DNA-binding drugs may serve as potential neurological therapeutics.

1. Structure of Aureolic Acids

These antibiotics contain a metal-binding b-ketophenol chromophore, a highly functionalized

aliphatic side chain, and a disaccharide and a trisaccharide chains important for DNA binding and

inhibition of DNA transcription (Fig. 4). The identity of the sugar chains and the sequence of the sugar

linkage of this drug family were first established by partial hydrolysis of olivomycin A86 and Mit.87

The structure of ChrA3 has later been further studied by means of 1H- and 13C-NMR spectroscopy.88

The structure of Mit has also been studied by the use of synthetic and NMR techniques,89 and has

recently been fully determined by means of 2D-1H and 13C homonuclear and heteronuclear methods

which is shown in Figure 4.90 The structures of the DNA complexes of the drugs have also been

investigated by the use of 2D-NMR techniques in recent years, which are discussed in a later section.

2. Role of Metal Ions in the Action of Aureolic Acids

A divalent metal ion, such as Mg2þ, Co2þ, Zn2þ, or Mn2þ, is required for aureolic acid to bind to a

double helical DNA to form a drug2–metal–(DNA)2 ternary complex.91–93 The metal–drug2

complex in the ternary complex is bound to DNA in the minor groove with a high preference to GC

sites and a length of approximately six base pairs based on 1H-NMR,94 DNA footprinting,95 and

biochemical96 studies. Consequently, these antibiotics can inhibit transcription of the genes that have

G-C-rich promoter sequences,96 such as the c-myc proto-oncogene97 (this binding might be non-

specific98) that regulate cell proliferation and also controls the expression of b-galactosidase.97,99

These studies led to further investigations of the interaction between this antibiotic family and double

helical DNA of different sizes and sequences.100 In addition to the above metal ions, Mit has been

Figure 4. A schematic structure of mithramycin.The metal binding b-ketophenol moiety is shown with thick lines. All drugs in the

aureolicacid familyhavethesimilarmetalbindingmoiety, but vary inthesugarchainswhichhavebeensuggested to causedifferent

interactionswith DNA.
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determined to bind several other metal ions, including Ca2þ, Cd2þ, Tb3þ, Gd3þ, and alkali metals.101

Metal:drug4 complexes are suggested to form for Ca2þ, Tb3þ, and Gd3þ; however, which does not

assist the binding of the drug molecules to DNA.

Some early studies of Mg2þ binding of Mit showed that two different complexes can be formed

which exhibit different absorption and CD spectra, in which the better known 1:2 Mg2þ–Mit2
complex formed at low Mg2þ concentrations and a 1:1 Mg2þ–Mit complex formed at higher Mg2þ

concentrations.93 Interactions of these two complexes with bulk DNA, polynucleotide, and an

octanucleotide are observed to be different. For example, while the 1:1 complex interact with the

B-DNA-representing poly(GC) � poly(CG) and the A-DNA-representing poly-G � poly-C in a similar

fashion, the 1:2 complex shows distinct interaction patterns with the two DNA forms. Since cellular

Mg2þ concentration varies significantly in neoplastic tissues,102 these two complexes can be expected

to form to certain extents and are considered important for in vivo action of the drug.93e

3. Role of Sugars

The importance of the sugar moiety in antibiotic activity of this family has been established in early

study of the different congeners and derivatives of this antibiotic family.103 Removal of the sugar

moiety E (Fig. 4) from olivomycin A (affording olivomycin D) and ChrA3 (affording ChrA4) results in

significant loss of antibiotic activity. Moreover, the derivatives with only one sugar and the aglycones

(without any sugar) are inactive. The involvement of the sugar chains in stabilization of the 1:2

complexes M2þ–(ChrA3)2 (M ¼ Mg and Ni) in methanol solution has been suggested.104 On the

contrary, the deglycosylated chromomycinone forms 1:1 complexes with these two metal ions. In

addition, Ca2þ was determined to form only a 1:1 complex with ChrA3 in methanol as opposed to a

previous observation in aqueous solution.101

The metal complexes of ChrA3 and Mit are found to interact differently with A- and B-

representing DNA sequences. Since these two congeners differ in the sugar moieties (the sugars of

ChrA3 are acetylated), this observation indicates the significance of the sugar chains in the interaction

of these antibiotics with DNA.93 The difference between ChrA3 and Mit has also been shown in their

binding with the oligonucleotide d(ACCGGGT)2, wherein ChrA3 forms a drug2–Mg2þ–(DNA)2

ternary complex whereas Mit has been proposed to afford a (drug2–Mg2þ )2–(DNA)2 ternary

complex based on their NMR spectra.105 This difference has also been attributed to the difference

in the sugar chains in these two congeners. The role of the sugar chains has further been investigat-

ed with a simple synthetic analogue, in which a simple triethylene glycol chain is attached to a

b-ketophenolate aromatic ring structure as the aglycone of ChrA3.106 This simple model forms M2þ–

ligand2 complexes (M ¼ Co and Mg) similar to ChrA3. Preliminary study by these authors shows that

this complex can bind DNA. The above studies further corroborate the significance of the sugar chains

in metal binding and in the binding of this drug family to double-stranded DNA.

Total synthesis of aureolic acid has been attempted,107 wherein stereoselective syntheses of aryl

2-deoxy-b-glycosides and the A-B disaccharide of olivomycin have been achieved. Since many

antibiotics are found to be glycosylated, such as BLM, aureolic acid, aminoglycoside, and AC

families discussed in this review, further exploration of glycosylated metal complexes and their DNA

binding properties should be encouraged.

4. (Aureolic Acid)2–Mg2þ–(DNA)2 Ternary Complexes

The requirement of divalent metal ions for the binding of aureolic acid to DNA has been fully

established by means of 1H- and 31P-NMR techniques, in which the spectral features of DNA are

changed upon the binding of the drug in the presence of Mg2þ.94 Several palindromic

oligonucleotides have been used for NMR studies, wherein the addition of 1:2 Mg2þ–(Mit)2 to

DNA afford ternary complexes whose 1H- and 31P-NMR spectra are completely different from those

of the parent DNA molecules. The interactions between the drug and DNA and between the two bound
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drug molecules in the drug2–Mg2þ–(DNA)2 ternary complexes have been revealed with 2D-NMR

techniques, from which the structures have been built as illustrated in Figure 5.

When a DNA sequence contains two GC sites separated by a few base pairs, such as the

decanucleotide (TAGCTAGCTA)2, binding of two equivalents of (drug)2–Mg2þ complex to the

DNA becomes possible.108 The introduction of two Mit drug molecules and one Mg2þ to this

decanucleotide forms a complex with half of the DNA molecule bound with the drug complex, i.e., the

(TAGCTA . . . )2 moiety on one end of the helix is bound with the drug complex whereas the same

moiety on the other end is not. This binding mode breaks the symmetry of the palindromic DNA

sequence, which results in doubling the number of NMR signals. Upon the addition of another

equivalent of Mit2–Mg2þ recovers the palindromic symmetry of the complex. The structure of this

unique ternary complex (Mit2–Mg2þ)2–(TAGCTAGCTA)2 has been determined by the use of 2D-

NMR techniques and molecular dynamic calculations, which can be retrieved from the Protein Data

Bank (PDB ID 207D.pdb). The above studies laid a good foundation for future studies of aureolic acid

binding to DNA of different lengths and sequences.

5. Paramagnetic (Aureolic Acid)2–Co2þ–(DNA)2 Terminal Complexes

The diamagnetic Mg2þ can be replaced with a paramagnetic Co2þ for the binding of aureolic acid to

DNA duplex to afford a ternary drug2–Co2þ–(DNA)2 complex.91a Because of the paramagnetism of

Co2þ, protons near the metal center are hyperfine-shifted64 to afford a 1H-NMR spectrum with a wide

spectral window of �100 ppm as represented in Figure 6 for the complex Mit2–Co2þ–

(ATGCAT)2.91a There are more than 50 signals well resolved in the large spectral window,

Figure 5. Stereo view of the structure of the ternary complex Mit2^Mg
2þ
^(TCGCGA)2 obtained with 2D-NMR techniques (Protein

Data Bank ID146D.pdb).The complex has a 2-fold symmetry with the two drugmolecules residing in the minorgroove of the DNA

duplex.

Figure 6. Hyperfine-shifted 1
H-NMR spectrum (360 MHz) of the ternary complex Mit2^Co

2þ
^(ATGCAT)2 at pD 8.0 obtained at

40�C.
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representing a rare ‘‘high resolution’’ 1H-NMR spectrum of a paramagnetic species. The good signal

resolution allows further extensive study of this complex. The ternary complexes (ChrA3)2–Co2þ–

(TTGGCCAA)2 and other complexes of longer oligonucleotides109 allow nuclear Overhauser effect

(NOE)57 to be clearly detected for better signal assignment. However, information about through-

bond nuclear interaction cannot be obtained because of the large signal widths of the hyperfine-shifted

signals attributable to large molecular size of the ternary complex. Nevertheless, combining the

distance constrains derived from nuclear relaxation times and the geometry-related dipolar shift,64 a

structure of the ternary complex has been constructed (Protein Data Bank ID 1EKH.pdb and

1EKI.pdb)109 which is similar to the structures derived from the previous 2D-NMR studies of the

diamagnetic Mg2þ complexes of this antibiotic family discussed above.

C. Streptonigrin

Streptonigrin (SN, also known as rufochromomycin and bruneomycin) is a metal-binding quinone-

containing antibiotic produced by Streptomyces flocculus110 (Fig. 7). This antibiotic has been shown

to inhibit several tumors and cancers (e.g., lymphoma, melanoma, and breast and cervix cancers) as

well as viruses in some early in vitro and clinical observations.111,112 While SN is active toward

mammalian cells at the chromosome level, it is found to be much less effective against insect cell

lines.113 A recent study shows that SN also exhibits ionizing radiation-like damage toward Ataxis

telangiectasia heterozygote cells.114 Despite the potency of SN, high toxicity and serious side effects

of this antibiotic have reduced its clinical value, and limit its use only as an experimental anti-tumor

agent.111,112 Nevertheless, because of its anti-tumor potency and unique structure, SN has served as a

lead drug molecule for chemical modification and synthesis of new compounds to correlate the

structure features with the biological activity and toxicity of this potent antibiotic.115

1. Action of Metallo-SN

SN is known to bind different transition metal ions to function properly.116,117 The interaction of

metal–SN complexes with DNA has been proposed on the basis of some optical studies.118 A redox

active metal ion such as Fe and Cu is required for this antibiotic to exhibit full antibiotic and anti-

tumor activities.119,120 The redox-active Fe and Cu complexes have been shown to accelerate SN-

mediated DNA scission in the presence of NADH, thus enhance the anti-tumor activity of this

antibiotic.121–123 These results indicate that metal ions are possibly directly involved in the action of

SN. However, the metal binding mode and structure of these metal complexes could not be definitely

determined in these studies. Particularly, two different configurations of the drugs are possible for

metal binding (Fig. 7) with the metal bound through either the quinolinequinone-amine

functionalities based on the crystal structure124 or the quinolinequinone-picolinate functionalities

that requires a significant twist of the crystal structure.

Figure 7. Schematic structures of streptonigrin (SN). The structure A is metal-free drug determined by means of crystallography,

whereas the structureB represents the configurationuponmetal bindingasdeterminedbymeansof NMR relaxation.The formation

of structureB requires adramatic twistof theC2^C2 0 bond in structureA.
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Since SN contains a quinone moiety, it may share some common mechanistic characteristics with

other quinone-containing antibiotics125 such as the ACs (discussed in Section 2.D ‘‘Anthracyclines’’)

in terms of in vitro and in vivo DNA and RNA cleavage and inhibition of cancer growth via inter-

ference with cell respiration and disruption of cell replication and transcriptional control.116,119,126

The metal–SN complexes can be reduced to their semiquinone forms by NADH, which then can

induce cleavage of DNA. This process is inhibited by superoxide dismutase and catalase, indicating

the involvement of superoxide and peroxide.119,121 Reduction of this antibiotic in the presence of a

bound metal ion is also confirmed by the detection of EPR signals attributable to the reduced

semiquinone form.127 Metal chelators and an antioxidant are found to prevent SN-induced DNA

damage and cytotoxicity,128 which supports the involvement of metal ions in the action of SN.

2. Metal Complexes of SN

Zn2þ binds SN to afford a few different complexes with different metal binding modes at various

temperatures, in which a 1:1 metal–drug complex is the predominant complex.129 A recent study of

the crystal structure of a Zn2þ complex that mimics the metal-binding moiety of SN showed the

binding of the metal to the quinolinequinone-picolinate functionalities,130 corroborating the struc-

tures of several paramagnetic metal complexes of the drug determined by means of NMR techniques

discussed below. The interaction of Zn2þ–SN with DNA and oligonucleotides has been investigated

with 1H- and 31P-NMR spectroscopy. This study concluded the requirement of metal ion for SN

binding to DNA131 and revealed sequence preference in DNA binding of this antibiotic, in which the

binding of Zn2þ–SN to d(GCATGC)2 shows noticeable spectral changes whereas the complex does

not affect the spectra of d(ATGCAT)2.

SN can bind several different paramagnetic metal ions, including Co2þ, Fe2þ, and Yb3þ ions,

with large formation constants to form 1:1 metal–SN complexes.132 The paramagnetic Fe2þ, Co2þ,

and Yb3þ complexes of SN have been studied with 1H-NMR spectroscopy and relaxation, and their

structures have been determined.132 The study of Fe2þ–SN complex is particularly important since it

is considered an active form of this drug that exhibits enhanced activity toward DNA destruction both

in vitro and in vivo.122 The hyperfine-shifted 1H-NMR signals of these paramagnetic complexes have

been fully assigned. The proton-metal distances derived from the relaxation times of the hyperfine-

shifted signals in these complexes match those of the complex with the metal located at the

quinolinequinone-picolinate site (structure B, Fig. 7), but not the quinolinequinone-amine site based

on the crystal structure (structure A). This configuration requires a significant twist of the C2–C2 0

bond by �180� in the crystal structure124 of the drug.

The introduction of poly[dA-dT] to reduced Cuþ–SN complex causes some small changes in

chemical shift of the 1H-NMR signals of the complex (0.22–0.31 ppm), which was suggested to be

attributed to the binding of this complex to the DNA duplex.123 The hyperfine-shifted 1H-NMR signals

of Co2þ–SN complex are found to be significantly changed upon addition of calf thymus DNA or

poly[dA-dT] (the chemical shifts of two hyperfine-shifted signals are shifted by 20–40 ppm),132

which are also indicative of direct binding of the complex with DNA. Along with the DNA binding

study of Zn2þ–SN complex, these studies indicate the significance of metal ions in the action of this

antibiotic.

D. Anthracyclines

Anthracycline (AC) antibiotics133 are produced by Streptomyces species. Soon after their discovery,

they were found to exhibit a wide spectrum of antineoplastic activity toward both solid and

hematologic tumors and cancers.134 In addition, an AC antibiotic has recently be found to exhibit

antifungal activity.135 Despite their severe cardiotoxicity136 (e.g., cardiomyopathy) and other

side effects,137 these antibiotics have been widely used as dose-limited chemotherapeutic agents for

the treatment of human cancers such as acute leukemia. The side effects have been attributed to the
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toxicity of these drugs toward mitochondria,138 leading to disturbance of bioenergetics, inhibitions of

enzymes, oxidation of lipids, disorders of membrane, and oxidative stress. The less toxic adriamycin

(doxorubicin) has currently been widely prescribed as a chemotherapeutic agent in association with

other antineoplastic agents, such as BLM and cisplatin. In addition, new AC antibiotics and their

chemical derivatives are still found or synthesized,139,140 which may provide potential clinical use in

the future.

The antineoplastic activity of AC antibiotics has been mainly attributed to their strong

interactions with DNA in the target cells. The AC family members possess a quinone-containing

chromophore and an aminoglycoside side chain.133 The structures of the representing members of this

family daunomycin (daunorubicin) and adriamycin are shown in Figure 8.141 There are a few

members of the AC family that contain more extensive sugar chains, such as b-rhodomycin contains a

monosaccharide and a trisaccharide, cinerubins, marcellomycin, and rhodirubins have a trisac-

charide, and musettamycin has a disaccharide chain.133 The redox activity of the AC ring plays a key

role in the action of these drugs. In addition, the metal ion bound to the 11,12-b-ketophenolate site is

also thought to be involved in some actions of these antibiotics.

1. Action of AC and Metal–AC Complexes

The action of this drug family has been considered to be attributable to their redox activity and DNA-

binding capability.133,142,143 Two pathways have been proposed for these drugs to deform DNA

structure and terminate biological function of DNA:2 (a) intercalation of the drugs into the base pairs

with the sugar chain sitting in the DNA minor grooves which involves hydrogen bonding,

electrostatic, van der Waals, and hydrophobic interactions (a representing AC–DNA structure is

shown in Fig. 9); and (b) a free radical damage of the ribose. The intercalation of AC drugs to DNA

dramatically distort the DNA structure which thus prohibits transcription. A number of crystal144 and

NMR145 structures of different AC–DNA complexes have been resolved. A representing AC–DNA

structure nogalamycin2-d(TGTACA)2 is shown in Figure 9.144h These structural studies allow

detailed comparison of sequence specificity of the drug binding and the different modes for the

binding of different drugs with DNA.

These antibiotics can be reduced to their semiquinone forms by biological reducing agents, such

as NADH and NADPH. Superoxide anion radical (O��
2 ) and H2O2 can be produced from dioxygen

upon receiving electrons from the semiquinone. Then, hydroxyl radicals can be generated, which can

attack cell components, such as membrane and DNA, and impair cell functioning. In the presence of

ascorbic acid and H2O2, hydroxyl radicals can also be generated by Cu2þ and Fe3þ–adriamycin.146

The radicals generated during the redox cycle of ACs and their Fe complexes have been considered the

cause of the cardiotoxicity.147 However, a recent study showed that the capability of producing free

radicals of ACs is not directly related to their cardiotoxicity. For example, although the 13-hydroxy

derivatives of ACs are more cardiotoxic, they are less effective producers of oxygen-based free

radicals.148 The 13-hydroxy metabolites of ACs have been found to impair intracellular iron

homeostasis, which provides new perspectives on the role of iron in cardiotoxicity of ACs.149

Figure 8. Schematic structuresofdaunomycin (R ¼ H) andadriamycin (R ¼ OH).
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ACs are known to bind various metal ions, including transition metal, main group, lanthanides,

and uranyl ions.150,151 A number of articles reported that some metal ions, e.g., Fe2þ /3þ, Cuþ /2þ,

Pd2þ,Pt2þ, andTb3þ,playanimportant role inaltering thebiochemicalpropertiesofACs.152–155 These

studies point a new direction in the pursuit of chemotherapeutic efficacy and lowering toxicity of these

antibiotics. The binding of metal ions may cause a significant influence on the redox property of these

drugs as shown in their Yb3þ complexes,156 thus affecting their activities. The interactions of DNA

and other cell components with metal–AC complexes, and their subsequent damage by the AC

complexes of redox-active metal ions, including iron and copper,157,158 have been previously studied

by the use of various physical and biochemical methods. Adriamycin has been suggested not to

undergo flavo-associated reduction upon intercalation.159 However, a site-specific modification of

DNA bases suggests a possible binding through intercalation,157b although specific electrostatic

interactions cannot be completely ruled out. Pulse radiolysis studies indicate that adriamycin

semiquinone can mediate a long-range electron transfer to as far as�100 base pairs in DNA,160 which

may also serve as a mechanism toward DNA base modification.

2. Fe–AC Complexes

It has been shown that several different metal ions, including alkaline earth metals,161 first-row161 and

heavy154 transition metals, and rare earth metals,155,161,162 can bind AC antibiotics very tightly in

aqueous and methanol solutions, with the metal bound to one or both of the two b-ketophenolate

moieties depending on the solution conditions. Iron is involved in the actions of several antibiotics,

such as BLM discussed in Section 2.A ‘‘Bleomycin’’, SN in Section 2.C ‘‘Streptonigrin’’, and

possibly ACs,153 which serves as a redox center and can generate free radicals in the presence of

dioxygen under reduction conditions which can damage cell components. The binding of Fe3þ with

daunomycin has been studied by the use of 57Fe Mössbauer, EPR, and X-ray absorption

spectroscopies, in which several different complexes are seen at mM drug concentrations.153a,163

Despite the similar structures of daunomycin and adriamycin, the Mössbauer spectra of their Fe3þ

complexes are noticeably different which has been attributed to their slight difference in structure and

reactivity.164

The binding of Fe3þ with several other ACs has recently been revisited.165 The results suggest

that Fe3þ binds these drugs to form 1:1 Fe–drug complexes with the metal bound at 11,12-b-

ketophenolate site, and 2:1 Fe2–drug complexes with the metal bound at both b-ketophenolate sites.

The formation of mononuclear, dinuclear, and polynuclear metal–AC complexes are also suggested.

The Fe3þ complexes of these drugs are very complicated systems since their spectra are dependent

upon the preparation procedure, equilibrium time, metal-to-drug ratio, and drug concentration.163–165

Figure 9. Crystal structure of nogalamycin2^d(TGTACA)2 complex inwhich the anthracycline (AC) rings are intercalated into DNA

basepairs.The complex ispacked in the crystal latticeas adimer with themonomersnearlyperpendicular to eachother.The DNA

duplex is shown in ribbonstructure inoneof the subunits.
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Different complexes are also formed for lanthanide(III) binding with AC antibiotics observed in an

early study, which is discussed in the next section.

A 1:2 Fe3þ–adriamycin complex was proposed to form a stable complex with calf-thymus DNA

in solution. This drug–Fe–DNA tertiary complex is distinct from both the Fe3þ–adriamycin complex

and the DNA-intercalated Fe3þ-free adriamycin on the basis of optical and chromatographic

studies.157b In another study, Fe3þ–ACs have been suggested not to intercalate into DNA base

pairs until the Fe3þ ion is released, despite the strong binding of Fe3þ with the drugs.157c A recent

mutagenesis study indicated that Fe3þ is directly involved in the mutagenicity caused by doxorubicin

through oxidative DNA damage, which further strengthens the role of Fe in AC action.166 Formation

of intracellular Fe–AC complexes have also been confirmed with different methods.167 Further

studies are still needed to clarify the mechanistic and structural roles of Fe in the action of this family

of antibiotics.

3. Lanthanide–AC Complexes

Lanthanide(III) ions (Ln3þ) have been very widely utilized as substitutes and spectroscopic probes168

for biological Ca2þ owing to their very similar ionic radii, binding properties, and coordination

chemistry, yet with much higher affinity constants because of the higher charges of Ln3þ ions (thus is

able to probe weak Ca2þ interactions).169 Indeed, both Ln3þ and Ca2þ ions have been reported to bind

ACs, in which Ln3þ ions show > 3 orders higher in affinity constants.156 Early NMR studies of the

paramagnetic Yb3þ–daunomycin complex did not yield useful information for the description of the

coordination chemistry of the complex because of the formation of a mixture and the lack of full

assignment of the paramagnetically shifted 1H-NMR features.170 The binding of several Ln3þ ions,

including Pr3þ, Eu3þ, Dy3þ, and Yb3þ, with ACs in both aqueous and methanol solutions under

different conditions has recently been revisited by means of electronic spectroscopy, cyclic

voltammetry, and NMR techniques.156,171

Like in the case of Fe3þ-bidning to AC drugs, different complexes are also formed for lanthanide

binding with ACs. A 1:1 Yb3þ–daunomycin complex has been successfully prepared in solution,

and its hyperfine-shifted 1H-NMR spectrum fully assigned by means of 2D-NMR techniques

(Fig. 10).156,171 On the basis of the conclusive signal assignment, the configuration of the complex in

solution has been determined to be similar to that of the metal-free drug in solution172 and in the

crystal structure,173 and the metal binding site determined to be the 10,11-b-ketophenolate moiety.

The AC drugs can bind Ln3þ to form complexes in solution with metal-to-drug ratios of 1:1, 1:2, 1:3,

and 2:1 depending upon proton activity in the solution.156 All of the complexes have been

characterized by means of 2D-NMR techniques.156 The complication in the earlier NMR studies has

been attributed to the formation of the different complexes at different proton activities, which is

likely to be the case for other metal complexes of the ACs.

4. Interactions of ACs and Their Metal Complexes With Other Biomolecules

In addition to their DNA intercalation and redox activity, AC antibiotics have been observed to

interact with other biomolecules that may also influence cell functioning and may be the cause of the

side effects of these drugs. For example, (a) adriamycin and its Fe3þ, Cu2þ, and Co2þ complexes

can cause influence on effector cells of humoral and cell immune response.174 (b) Fe–adriamycin

complex was found to damage erythrocyte ghost membranes, which is attributable to the production

of superoxide and hydrogen peroxide by the complex.157a (c) The Fe2þ, Cu2þ, and Co2þ complexes of

adriamycin are potent inhibitors of propanolol-induced Ca2þ-dependent Kþ efflux, but not Pb2þ-

dependent Kþ efflux, whereas Fe3þ–adriamycin can activate Kþ permeability of erythrocytes.

However, the AC rings of adriamycin alone enhances Ca2þ-dependent Kþ efflux from erythrocytes.

These influences are attributed to the influence on cellular Ca2þ transport rather than direct action on

Kþ channels.175 (d) AC drugs can cause poor wound healing176 as a result of impaired biosynthesis of
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collagen.177 The inhibition of AC drugs against the Mn2þ-containing prolidase has been observed to

be parallel to the impairment of collagen synthesis.178 The binding of the AC drugs to the Mn2þ in the

active site of prolidase has been suggested to be the cause of the inhibition. Moreover, the higher

Mn2þ-binding affinity of daunomycin than that of adriamycin has been considered to contribute to

its greater potency in inhibition of collagen biosynthesis. (e) The Fe3þ–adriamycin complex is

determined to be a potent inhibitor of protein kinase C,179 and the Cu2þ–AC complexes are con-

sidered to serve as a vehicle to carry Cu2þ to protein kinase C which results in inhibition of the

enzyme.180 Direct binding of the complexes with the enzyme has been ruled out. These studies

suggest that the interactions of AC drugs with different bio-targets must be taken into consideration

for further drug design and future studies of the bioactivity and toxicity of these drug family.

E. Aminoglycosides

Aminoglycosides form a unique and structurally diverse family of antibiotics (Fig. 11), which include

the famous Waksman’s streptomycin and the widely used neomycin (an ingredient in ‘‘triple

antibiotic’’ ointment along with bacitracin and polymyxin B). Despite their nephrotoxicity and

ototoxicity, these antibiotics have remained their clinical values and also serve as lead drugs for

rational design of next-generation antibiotics.181

1. RNA-Binding and Aminoglycoside Action

Aminoglycoside antibiotics are known to bind RNA which is considered the key mechanism in their

antibiotic activities.181–183 This binding decreases translational accuracy and interferes with

translocation of the ribosome.184 For example, neomycin-like aminoglycosides bind rRNA near the

aminoacyl site, preventing chemical modification on the nucleotides in the aminoacyl site.185

Neomycin B has been determined to bind to the transactivation-responsive element of HIV-1 RNA.186

Neomycin has also been determined to inhibit the self-cleavage of the ribozyme from human hepatitis

d virus by direct replacement of the active divalent metal ions.187 Moreover, aminoglycosides are

known to bind and cleave hairpin ribozyme in the absence of Mg2þ, however, with much smaller rate

Figure 10. The 1
H-EXSY-NMR spectrum of 1:1 Yb

3þ
^daunomycin complex in methanol. The signals due to the metal complex

(top trace) cancorrelatewiththoseofthefreedrug (traceonthe left) inthisspectrum, shownascrosspeaks inthe‘‘2Dmap’’ (labeled

withnumbers corresponding to the structure in Figure 8).The spectrumobtained in aqueous solution exhibits similar features as in

methanol.
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constants kcat in most cases except neomycin and apramycin of 18 and 13 times smaller, respectively,

than that of Mg2þ-catalyzed cleavage.188

The interaction of aminoglycosides with RNA has been investigated by the use of small RNA

nucleotides that contain the drug recognition site.189 The solution structure of a 27-mer RNA

molecule, and the structures of this RNA nucleotide bound with paromomycin and gentamicin have

also been determined with NMR spectroscopy.190 The structures of an E. coli decoding region A-site

oligonucleotide with and without a bound paromomycin have also been resolved by means of

homonuclear and heteronuclear NMR techniques, wherein the two structures are found similar except

at the antibiotic binding region.190,191 Crystal structures of ribosomal 30S RNA subunit192 and its

complexes with paromomycin, streptomycin, and spectinomycin have been resolved (Fig. 12, Top).193

These structures have provided structural details about the conserved A1492 and A1493 region as

well as detailed interactions of aminoglycoside antibiotics with RNA (Fig. 12, Bottom) which afford

structural basis for the understanding of the action of aminoglycosides. Another crystal structure of

RNA–aminoglycoside complex has also been recently determined, wherein two ribosomal decoding

A-sites are bound with two paromomycin molecules.194 In both solution and crystal structures, the

ringsA andB of the antibiotics (cf. Fig. 11) are found to be involved in specific interactions with RNA

via H-bonding with G and A nucleotides, whereas rings C and D in paromomycin and neomycin

contribute to the drug binding affinity to RNA. Consequently, methylation of G or A nucleotide can

lead to different bacterial resistances to this family of drugs.195 Nevertheless, different drugs are found

to bind at different locations in 30S RNA, which could be metal-dependent (cf. Section 3 for TC

binding to RNA).

2. Metal Binding and Bioactivities

Metal ions have been determined to be involved in some unique activities of aminoglycosides. The

binding of iron to gentamicin (Fig. 11) has been postulated to induce free radical formation which

Figure 11. Schematic structures of aminoglycosides (A) neomycin B (R ¼ NH2) and paromomycin (R ¼ OH), (B) gentamicin C1
(R1 ¼ R2 ¼ CH3), gentamicin C2 (R1 ¼ CH3; R2 ¼ H), and gentamicin C1A (R1 ¼ R2 ¼ H), and (C) kanamycin A (R1 ¼ OH;

R2 ¼ OH), kanamycin B (R1 ¼ OH; R2 ¼ NH2), and tobramycin (R1 ¼ H; R2 ¼ OH).
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causes peroxidation of lipids.196 The Fe2þ/3þ complexes of gentamicin have recently investigated

with NMR, in which a low-spin 2:1 drug-to-Fe2þ complex as well as a 1:1 and a 2:1 drug-to-Fe3þ

complexes have been proposed to form.197 These redox-active iron complexes were implied for

aminoglycoside toxicity.

The macrolide antibiotic erythromycin has a structure different from the streptomycin-like

antibiotics, yet it contains two sugar moieties (one being a t-aminosugar), carbonyl, and hydroxyl

groups which potentially can serve as metal binding ligands. An erythromycin–iron complex was

observed to exhibit superoxide scavenging activity that was not seen for the antibiotic without the

metal.198 However, the physical and structural properties of the metal binding site and the structure of

the complex were not determined in the study.

Several other aminoglycoside antibiotics have been determined to bind Cu2þ, including

lincomycin,199 kasugamycin,200 kanamycin B,201 tobramycin,202 genticin,203 and the semi-synthetic

amikacin204 (Fig. 11). In addition, a few simple amino sugars have also been reported to bind Cu2þ,

which serve as simple model systems for metal-binding of aminoglycoside antibiotics.205 In all the

cases, the binding of Cu2þ to the aminoglycosides are highly pH-dependent, and afford multi-species

around neutral pH based on the results from potentiometric and EPR studies. The Cu2þ–amino-

glycoside complexes are observed to exhibit oxidative activity, which can catalyze oxidation

of nucleotides in the presence of H2O2.199–201,204 Hydrolytic cleavage of DNA206 and RNA

molecules207 and the RNA of the HIV-1 viral Rev response element207 under physiological conditions

by Cu2þ–aminoglycoside complexes was also observed. The metal ion in these complexes has been

Figure 12. Crystal structure of antibiotic-bound 30S rRNA complex (top structure, Protein Data Bank ID1FJG.pdb) and the details

about theparomomycin-bindingenvironment (bottom).TheRNAmolecule is shown ingreen, proteins ingray, and theaminoglyco-
side antibiotics paromomycin, streptomycin, and spectinomycin are shown in purple, blue, and red colors, respectively in the top

structure.Thereare 96Mg
2þ

ionsand 2Zn
2þ

ions (bound to thepeptide chain) found inthis structure (not shown inthe figure); how-

ever, themetal ions arenot involved in thebindingof theantibiotics.
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proposed to bind to the drugs through a chelating vicinal aminohydroxyl binding moiety of the drugs.

The binding site of Cu2þ in kanamycin A has been determined to be the 3 0–NH2 and 4 0–OH groups of

ring C (Fig. 11C) by means of 13C-NMR relaxation and potentiometric measurements.201,206

F. Quinolones

Quinolones are comprised of a large family of antibacterial agents such as nalidixic acid, pefloxacin,

norfloxacin, ofloxacin, and ciprofloxacin (Fig. 13).208,209 The first-generation nalidixic acid is active

only against Gram-negative bacteria, whereas the later generations, such as the fluoroquinolones with

a fluorine atom on the number 6 carbon (Fig. 13B), have been modified to become effective anti-

bacterial agents which exhibit a broad spectrum of activity highly against Gram-negative bacteria and

less active against Gram-positive bacteria and also show significant activity against anaerobic

bacteria. Fluoroquinolones have been further modified to produce quinobenzoxazines (Fig. 13C),

which are found to show anti-tumor activities (whereas the parent quinolones lack such activities)

believed to be attributable to their interaction with topoisomerase II.210 Ciprofloxacin (Cipro1 of

Bristol-Myers) is a prototypical fluoroquinolone which has been brought on the stage in recent anti-

bioterrorism reactions. It has become ‘‘the antibiotic of choice’’ for fighting against anthrax caused by

Bacillus anthracis prior to the release of significant amount of toxin by the bacterium, despite the fact

that several other antibiotics are also effect against this bacterium.211 Since this family of drugs have

become widely used, one should also bear in mind the risk of serious side effects such as tendinopathy

as a consequence of quinolone treatment.212

1. Metal Complexes of Quinolones

Quinolones can bind several divalent metal ions, including Mg2þ, Ca2þ, Mn2þ, Fe2þ /3þ, Co2þ, Ni2þ,

Cu2þ, Zn2þ, Cd2þ, and Al3þ,213,214 and may result in change in their activity. Mg2þ and Al3þ were

found to decrease the activity of the drugs,215 whereas Fe3þ and Zn2þ complexes were found to

exhibit higher activities.216 The crystal structures of the Ni2þ and Cu2þ complexes of cinoxacin and

ciprofloxacin have been solved, in which the metals are found to bind to the a-carboxylketo moiety to

form 1:2 metal-to-drug complexes.214 The complexes have a pseudo-axial symmetry with the two

drug ligands bound symmetrically at the equatorial positions. The axial symmetry is also seen in the

EPR spectra of Cu2þ–(drug)2 complexes.213e,214c The drug was also determined by means of

crystallography to form a 1:3 Co2þ :drug3 complex.217 A few metal complexes (Fe3þ, Cu2þ, and Bi3þ)

of quinolones were prepared in acidic solutions, from which crystals were obtained and structures

solved.218 However, the metal ions in these crystals do not bind directly to the drugs owing to

protonation of the carboxylate group, which may not be relevant to the drug action under

Figure 13. The structures of (A) nalidixic acid; (B) the prototypical fluoroquinolones (F substitution at position 6) ciprofloxacin

(Cipro
1
); R1 ¼ H; R2 ¼ cyclopropyl, norflozacin; R1 ¼ H; R2 ¼ ethyl, andpefloxacin; R1 ¼ CH3; R2 ¼ ethyl; and (C) aprototypical

quinobenzoxazine, A-62176.
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physiological conditions. The formation of M2þ (quinolone)(2,2 0-dipyridine) ternary complexes

(M ¼ Co, Ni, and Cu) was observed by means of electrospray ionization and laser desorption mass

spectroscopy.219 A recent theoretical study suggested that metal binding to these drugs is associated

with the action of these drugs, and fluorescence quenching measurements indicate the presence of a

p–p stacking which has been suggested to be associated with the DNA intercalation capacities of the

drugs and their Cu2þ complexes.220

2. Mechanism of Quinolone Action

The binding of quinolones to DNA-gyrase or topoisomerase IV has been considered the key step in the

action of these drugs, which prohibits DNA religation activity and distorts DNA in the complex.221

Recent studies on the mapping of the functional interaction domain of topoisomerase II revealed that

the quinolone-action site on the enzyme overlaps with those sites for the DNA cleavage-enhancing

drugs, including etoposide, amsacrine, and genistein.222 DNA has been considered the target for

quinolone drugs, and a cooperative quinolone–DNA binding model of DNA gyrase in the presence of

ATP is proposed.223 Norfloxacin exhibits a Mg2þ-dependent binding to plasmid DNA in the absence

of the enzymes,224 wherein metal–drug, metal–DNA, and drug–metal–DNA complexes are

detected. The drug does not bind to DNA in the absence or in the presence of an access amount of

Mg2þ. Intercalation of norfloxacin into DNA is proposed in the study, and Mg2þ is proposed to serve

as a ‘‘bridge’’ for the carboxylate of the drug to interact with DNA. However, DNA unwinding

efficiency of �10� by this drug is only marginal for a weak intercalation.224,225 Fluorine-19 NMR

study of the binding of pefloxacin with double stranded DNA also revealed the participation of Mg2þ

in the binding.226 Moreover, the Mg2þ-dependent single-stranded DNA binding affinities of several 6-

substituted quinolones are found to correlate with the gyrase poisoning activity of these drugs,227

confirming the involvement of Mg2þ in such interaction and the significance of the substitution at

position-6 and supporting the mechanism derived from quinolone–DNA interaction.

Quinobenzoxazines have been proposed to bind DNA duplex in the presence of Mg2þ to form a

ternary complex in the form of drug2–Mg2þ
2 –DNA, in which one drug molecule is proposed to

intercalate into the DNA base pairs while the other is ‘‘externally bound.’’228 The two Mg2þ ions serve

as salt bridges which interact with both molecules of the drug and the phosphoester backbone of DNA.

These drugs have been determined to form a 1:1 or 2:2 complex with Mn2þ in methanol by means of

Job plot229 (in which absorption is measured against different metal-to-ligand ratios), which also

implies a possible formation of ternary complexes between 2:2 metal–quinolone complexes and

DNA. The metal–quinobenzoxazine complex interacts with DNA in a cooperative manner, i.e., a 4:4

metal–drug complex is proposed to interact with DNA as a unit, in which two drug molecules

intercalate into DNA base pairs while the two ‘‘external’’drugs havep–p interaction and are expected

to interact with the enzyme topoisomerase II or gyrase. The 2:2 metal–drug complex is also suggested

to be assembled in the presence of topoisomerase II based on the results from photocleavage assay, the

use of mismatch sequences, and competition experiments.230 The formation of the 2:2 metal–drug

complexes suggests that different quinobenzoxazine or quinolone drug molecules should be utilized

to form ‘‘hybrids’’ for the pursuit of optimal structure–activity relationship.

G. Cisplatin

The antibiotic activities of the platinum complexes cis-diamminedichloroplatinum (also commonly

known as cisplatin, cis-[PtII(NH3)2Cl2]; R1 ¼ NH3 and R2 ¼ Cl in Fig. 14) and cis-PtIVCl6(NH4)2

were found serendipitously by Barnett Rosenberg to cause dramatic elongation of E. coli during a

study of the influence of electric fields on the growth of the bacterium by the use of a platinum electrode

in a buffer solution containing NH4Cl.231 The abnormal growth of this bacterium was later identified

to be caused by the oxidation of the Pt electrode to form the Pt(IV) salt, which was confirmed via

chemical synthesis of the compound. In the meantime, the Pt(II) compound cis-[Pt(NH3)2Cl2] was
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also identified to be a potent antibiotic agent, causing the same effect as the Pt(IV) salt. Thus, these

synthetic metal complexes can be considered metalloantibiotics from a broad sense of the term as they

can inhibit the growth of microorganisms. After its discovery, cisplatin was soon found to be a potent

anti-cancer agent and is nowadays one of the most prescribed anti-cancer drugs which has been used

for the treatment of several different cancers and tumors, including head and neck tumor and

testicular, lung, breast, and ovarian cancers.232 DNA is considered the main biological target of

cisplatin. The coordination chemistry and reactivity of cisplatin and the interaction of cisplatin with

DNA have been extensively studied by means of 1H-, 31P-, and 195Pt-NMR spectroscopy and X-ray

crystallography, and has previously been reviewed in a number of publications.233

1. Cisplatin–DNA Complexes

The chemistry of cis-[Pt(NH3)2Cl2] has been thoroughly investigated in the late 1890s by Alfred

Werner.234 The two bound chloride ions in cisplatin are relatively labile, which can undergo exchange

with nucleophiles such as amine bases. Upon introduction of DNA, cisplatin binds to the N7 nitrogen

of two adjacent guanidine bases or guanidine–adenine bases in the major groove, or two proximal

guanidine bases on different strands in the minor groove which distorts the DNA structures by bending

the helix by 40–60� and a helical twist of 25–32�. This binding pattern and structural perturbation on

DNA have recently been revealed by means of crystallography235 and NMR spectroscopy236 (Fig. 15).

The DNA binding mode of cisplatin cannot be achieved by its stereoisomer ‘‘transplatin’’

(R1 ¼ Cl; R2 ¼ NH3 in Fig. 14),237 in which the two trans chloride cannot bind to adjacent guanidine

bases as in the case of cisplatin. The lability of the Pt–Cl bond still allows nucleophilic substitution to

occur in transplatin which can result in DNA binding. However, the DNA binding of transplatin is

significantly different from that of cisplatin, wherein cross-strand linkage becomes predomi-

nant.233,238 The observation of significant cytotoxicity of the trans analogues with pyridine in place of

the ammonia239 and high anti-tumor activity of trans-imino analogues240 suggest that ‘‘transplatin’’

analogues are worth further exploration for design of new platinum antineoplastic agents.237

2. Cisplatin Conjugates

Cisplatin has been linked to bioactive molecules to form conjugates which exhibit unique proper-

ties in terms of DNA binding and anti-tumor activity. For example, adriamycin (Section 2.D

‘‘Anthracyclines’’) can form complexes with PtCl4
2� to afford cisplatin-like complexes,154a such as

cis-dichloro-t-butylamine-adriamycino-platinum which has been determined to be active against

murine carcinoma and leukemia.154b This complex has been suggested to interact with DNA by

intercalation of the AC rings rather than covalent binding to the Pt center. A hormone-anchored

cisplatin complex has been prepared in which testosterone is bound to cisplatin in place of the

diammine groups via a thiosemicarbazone linkage.241 This conjugate exhibits a higher activity than

cisplatin against human breast cancer cell line MCF-7. The binding of cisplatin with proteins,

including serum albumin242 and transferrin,243 has also been reported which is considered to play

important role in the metabolism and bioactivity of this drug. The interaction of proteins with cisplatin

may possibly mediate cell response to the drug, which has been recently reviewed.244

Figure 14. Schematic structures of (A) cisplatin (R1 ¼ NH3 and R2 ¼ Cl) and ‘‘transplatin’’ (R1 ¼ Cl and R2 ¼ NH3) and (B) the
less toxicanalogue carboplatin.
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3. Cisplatin Analogues

A large number of cisplatin-like compounds have been synthesized, their molecular properties

thoroughly characterized, and their anti-tumor activities evaluated.233,245 Of these new analogues, the

compound carboplatin (cis-diammine-cyclobutane-1,1-dicarboxylatoplatinum, Fig. 14B) exhibits

lower toxicity than cisplatin and has currently been used clinically for cancer treatment. The other

compounds such as nedaplatin (cis-diammine-1-hydroxoacetatoplatinum) and oxaliplatin (1,2-

diaminocyclohexane-oxalatoplatinum) also exhibit potential antineoplastic activities, which have

gained approval for clinical use in some countries and are under extensive evaluation.233,245,246

Several cisplatin analogues with two Pt centers have recently been prepared, possessing a general

formula of [(trans-PtCl(NH3)2)2-m-L]2þ in which L is a diamine linker.247 Because of the presence of

two DNA-binding motifs in each molecule, binding of these dinuclear platinum complexes to DNA

duplex affords intrastrand and/or interstrand cross-link, wherein the bending of DNA at the binding

site is much less than that caused by cisplatin.247,248 These dinuclear platinum compounds exhibit

anti-tumor activities differently from cisplatin and may also be different from each other, and are

Figure 15. Stereoviewof the structuresofd(CCTGGTCC)*d(GGACCAGG) obtainedwithNMR spectroscopy (top structure; Protein
Data Bank ID1AU5.pdb), inwhich cisplatin isboundat the center GGnucleotides ofone strand, andd(CCTCGCTCTC)*d(GGAGC-

GAGAG) obtainedwith X-ray crystallography (bottom structure; Protein Data Bank ID1A2E.pdb), inwhichcisplastin isbound to the

center G from each strand.The binding of cisplatin to DNA significantly distorts DNA structure, particularly in the case of the cross-

strandbinding.
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potential new anti-tumor agents. Analogous compounds with multi-platinum centers have also been

prepared and show significant anti-tumor activities and a cellular response different from cisplatin,

and have been under clinical trial.249 The DNA-binding pattern of these new compounds has also been

investigated which shows a similar bifunctional manner as dinuclear platinum compounds.250

Platinum(IV) complexes have been known to exhibit anticancer activities.231 Several Pt(IV)

complexes have entered clinical trials;251 however, they have not been widely used because of lower

activities than cisplatin or high toxicity and viability of drug uptake, including cis,trans,cis-

[PtCl2(OH)2(isopropylamine)2] (iproplatin, CHIP, or JM9),252 [PtCl4(D,L-cyclohexane-1,2-diamine)]

(tetraplatin or ormaplatin),253 and cis,trans-[PtCl2(OAc)2(NH3)(NH2C6H5)] (JM216 or satrapla-

tin254). The bioinorganic chemistry of Pt(IV) complexes has recently been extensively reviewed.255

H. Organometallics

Organometallic compounds are a large family of unique synthetic metal-containing organic

compounds, which are characterized by the presence of direct metal–carbon bond(s). Several

organometallic compounds have been found to exhibit antineoplastic activities.256 Of these, the

‘‘metallocene’’ compounds M(IV)Cp2Cl2 (Cp ¼ cyclopentadienyl; M ¼ Ti, V, Nb, and Mo) show

significant activities toward several experimental animal tumors and human tumors on nude mice,

whereas the Zr and Hf analogues do not show anti-tumor activity.257 The Ti compound has entered

clinical trials.258 In addition to the metallocenes, there are a number of non-platinum metal complexes

which have been extensively studied and tested for their anti-tumor activities and are covered in recent

reviews.233e,256

Although metallocenes were originally considered to bind DNA similar to cisplatin, recent

studies indicated that they do not bind tightly to DNA at neutral pH.259,260 Nevertheless, DNA is still a

binding target of these compounds under certain conditions,256 as suggested by NMR studies.261

TiCp2Cl2 has been suggested to exhibit an anti-tumor mechanism different from cisplatin,262 showing

inhibitory activity toward protein kinase C and DNA topoisomerase II.259 The hydrolysis of these

compounds into M(IV)Cp2(H2O)2
2þ has been proposed to render their anti-tumor activities.259 The

different pKa values of the bound water molecules in MCp2(H2O)2
2þ result in different charges on the

compounds, which relates to their capability of entering cells. The high acidity of TiCp2(H2O)2
2þ

with pKa values of 3.51 and 4.35, which afford a neutral species at pH 7.0, and its reasonable stability

with t1/2 ¼ 57 hr for Cp dissociation263 may account for its high anti-tumor activity.

MCp2Cl2 can form conjugates with adriamycin (Section 2.D ‘‘Anthracyclines’’) to give 1:2

metal-to-drug complexes (M ¼ V and Zr) and 1:1 and 1:2 complexes (M ¼ Ti).264 While the Zr

conjugate does not show activity toward P-388 leukemia, the Ti complexes exhibit activity

comparable to the free drugs. The structures of these metal conjugates were not determined in the

previous study. The metal ions are suggested to assist the binding of the drug to DNA and red blood

cell membrane. However, these metal complexes do not catalyze electron transfer from NADH to

dioxygen as does adriamycin (Section 2.D ‘‘Anthracyclines’’), which possibly may decrease the

cardiotoxicity of adriamycin. Thus, these conjugates seem to serve as bifunctional anti-tumor

compounds, i.e., to release adriamycin and the M–Cp2 complex.

3 . M E T A L – T C C O M P L E X E S A N D B A C T E R I A L R E S I S T A N C E

The tetracyclines (TCs) have once been widely used as both external and internal medicines for an

extended period of time because of their broad-spectrum activity toward both Gram-positive and

-negative bacteria, and also their activity toward rickettsiae, chlamydiae, and protozoans, such as the

prototypical TC aureomycin (Fig. 16) produced by Streptomyces aureofaciens.265 The antibiotic

activity of TCs is attributed to their binding to the ribosome which inhibits protein synthesis.266 Their

usage has been limited in recent years because of side effects, including staining of teeth and increase
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in bacterial resistance. However, recent studies of the mechanism for bacterial resistance of this drug

has afforded new insight into rational design of analogues and searching for new analogues of this

broad-spectrum antibiotic family, such as the novel 9-glycylamido derivatives the ‘‘glycylcyclines,’’

for defending bacterial infections.267,268 One of the glycylcyclines 9-t-butylglycylamido-minocy-

cline (GAR-936, tigilcycline) is currently under phase II clinical trials.269

A. Metal Binding

The metal-binding capability of TCs has been well documented,150 including the binding with

alkaline earth and transition metal ions (VO2þ, Cr3þ, Mn2þ, Fe2þ/3þ, Co2þ, Ni2þ, Cu2þ, and Zn2þ) and

Al3þ .270–274 TCs have been determined to be present mainly as Ca2þ -bound form (and Mg2þ -bound

form to a lesser extent) in the plasma when they are not bound to proteins such as serum albumin.

Thus, the bio-availability of TCs should be dependent upon the physical and biochemical properties of

their metal complexes instead of their metal-free forms. Metal binding to different TCs are found to be

slightly different which has been suggested to be correlated to their pharmacodynamic effect.271b

The acidic oxy-groups at positions 1, 3, 10, 11, and 12 of TC are the potential metal binding/

chelating sites (Fig. 16). The acidity of these groups has been determined to follow the order of 3–

OH > 12–OH > 4-ammonium > 10–OH.150 The 11,12-b-ketoenol moiety has been considered to

be the primary metal binding site,275 which has also been determined to be the Mg2þ binding site in

the repressor TetR–Mg2þ–TC ternary complex (see later). A recent study indicated that TC forms 2:1

TC:metal complexes with 3d transition metal ions in non-aqueous solutions, in which the metal is

bound at the 2-amido 3-enol chelating site.270 Moreover, the formation of metal–TC complexes with

different stoichiometries, including 2:1, 1:1, and 1:2 metal:TC ratios, has also been suggested in the

previous studies.

B. RNA Binding

The antibiotic activity of TCs is attributed to their binding to the ribosome.266,276 TCs have been

reported to bind different forms of RNA, including the ribosome, bulk RNA, rRNA, and ribozymes.

The studies of TC binding and interaction with RNAs have recently been reviewed.277 The binding of

TCs to bulk RNA is not specific, and may not be significant for their antibiotic activity.278 On the other

hand, this family of antibiotics bind to the ribosome at the 30S subunit with Kd of 1–20 mM

(in addition to many other low affinity sites). This binding induces a conformational change that

prevents tRNA from binding to the ribosome and results in interference of protein synthesis.279 The

interaction of TCs with 16S rRNA has recently been extensively studied with photo-modification,

activity assay, mutation, and other methods, from which the TC-binding sites have been

identified.277,280

The crystal structures of TC-bound small ribosomal subunit have recently been resolved,281

further confirming the significance of such binding in the action of this antibiotic family. Two TC

molecules are found to bind to the RNA (Fig. 17).281a One of the TC molecules may involve a Mg2þ

ion (at the 11,12-b-ketophenolate site that is found in metal binding studies of TC discussed above) in

Figure 16. Schematic structure of aureomycin (7-chlortetracycline). Substitute OH for 5-H and H for 7-Cl afford terramycin (5-

oxytetracycline).
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Figure 17. Top: The crystal structureof 30S rRNAwith twotetracycline (TC)moleculesbound (red).Thereare 96Mg2þ ions found in
the structure. The one located near 11,12-b-ketoenol moiety may be involved in the binding of the drug to RNA (bottom enlarged

bindingsite of theTConthe right), as inthe case of thebindingof the drug toTetR receptordiscussedbelow.

Figure 18. Top: Stereo viewofone subunit of the ternary complex formedbetween class DTetR repressorand Mg
2þ
^aureomycin

(Protein Data Band ID 2TCT.pdb).The Mg
2þ
^aureomycin complex is shown in red.The DNA-binding domain is located at the N-

terminus on the left.The 2-fold symmetry of theTC^TetR dimeric complexallows thebindingof the complex to the15-base pair tet-

operator. Bottom: Structure of theTC biding site in theTetR^Mg
2þ
^TC ternary complex.The drug complex is bound to the protein

throughHis100 viaMg
2þ

(green), and is also H-bondedwith theprotein through threeaminoacid side chains.
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binding to RNA through the phosphates of C1054, G1197, and G1198 (Fig. 17). The TC molecules

occupy the sites that are distinct from those for the binding of aminoglycosides discussed in Section

2.E ‘‘Aminoglycosides’’ (cf. Fig. 12).

Inhibition of ribozymes by TCs has been studied, including groups I and II introns, hammerhead

ribozyme, a ribozyme from hepatitis delta virus, and Neurospora crassa Varkud satellite RNA.187,282

The concentration for 50% inhibition (IC50%) of ribozymes has been determined to be �10–500 mM

for several different TCs, with hydrophobic TCs showing higher inhibitions. The large IC50% values

indicate that these drugs are weak inhibitors for ribozymes, or may even serve as non-specific

inhibitors.277 The binding sites, the binding nature, the pattern for the inhibition, and the role of metal

ions (particularly the RNA-significant Mg2þ ) in the binding with ribozymes were not revealed in the

previous studies.

C. Metal-Dependent Bacterial Resistance

Despite the high potency as broad-spectrum antibiotics, TCs are of little use nowadays because of

their bacterial resistance.265b,283 The predominant TC-resistance mechanism in Gram-negative

bacteria is active efflux of the drugs mediated by the antiporter membrane protein TetAwhich pumps

out TC as a Mg2þ complex coupled with proton uptake.284 The expression of TetA is controlled by the

repressor protein TetR, whose binding to operator prevents transcription of both tetR and tetA genes.

A conformational change of the TetR repressor is supposed to occur upon binding of TC in the

presence of divalent metal ions.285 The conformational change results in the release of the repressor

from the operator and initiates the expression of TetA for active TC efflux. The crystal structures of the

repressor TetR and the ternary complex TetR–Mg2þ–TC have been resolved which confirm the

induction of the conformational change of the repressor upon the binding of the Mg2þ–TC

complex.286,287

A structure of Mg2þ–TC-bound TetR is shown in Figure 18(Top). TetR is a dimeric protein with

10 a-helical structures, of which the first three helical bundles from the N-terminus of each subunit

serve as the DNA binding site. The tet-operator is composed of 15 base pairs shown below, which has a

2-fold symmetry (boxed sequences) with respect to the center T-A base pair.

Upon Mg2þ -TC binding, significant conformational changes of TetR are observed, including

changes in the drug binding site and the DNA binding site.286 Significant changes are also observed

at helix-9, suggesting that the opening at the C-terminus of helix-9 serves as the entrance for the

drug as this opening is significantly narrowed after TC binding.286,287 Mg2þ in the ternary TetR–

Mg2þ–TC complex is found to bind to the drug at the 11,12-b-ketoenol moiety (as suggested in early

metal-binding studies, see above) and to TetR via His100, in addition to three water molecules

(Fig. 18).

Fe2þ can form a ternary complex with TC and TetR in place of Mg2þ .285,288 An in vitro induction

assay shows that Fe2þ–TC is a stronger inducer of Tet repressor than Mg2þ–TC by more than 1,000

times, suggesting that Fe2þ may play a role in TC resistance in vivo.288b Specific sites of cleavage of

TetR by the bound Fe2þ is achieved in these studies via Fenton chemistry, and have been identified by

means of electrospray ionization mass spectroscopy. The cleavages are found to occur at residues

104 and 105, 56 and 136, and 144 and 147 in order of preference. This cleavage pattern is consistent

with the geometric locations of the respective residues to the metal center found in the crystal

structures. The determination of the roles of metal ion in the binding of TC to TetR and in the structure

of the TC–M2þ–TetR complex is expected to lead to rational design of TC analogues that exhibit

T C T A T C A T T G A T A G G

A G A T A G T A A C T A T C C
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broad-spectrum antibiotic activities yet devoid of bacterial resistance, such as the glycylcycline

family.267–269

4 . B A C I T R A C I N A N D C E L L W A L L B I O S Y N T H E S I S

Bacitracin is a metal-dependent dodecapeptide antibiotic excreted by Bacillus species, including B.

subtilis and B. licheniformis. It is a narrow spectrum antibiotic directed primarily against Gram-

positive bacteria, such as Staphylococcus and Streptococcus, via inhibition of cell wall synthesis.289

Currently, this antibiotic is commercially produced in large quantities as an animal feed additive for

livestock290 and in human medicinal ‘‘triple antibiotics’’ ointments (along with polymyxin and

neomycin).291 The historical perspectives, the structure of metallobacitracin, and the structure–

function relationship of this antibiotic have recently been reviewed.292

A. Congeners and Biosynthesis

This antibiotic is produced as a mixture of many closely related peptides, in which bacitracins A1 and

B1 are the major components with the most potent activity (Fig. 19).293 Several congeners of this

antibiotic have previously been isolated and characterized by means of amino acid sequence and

mass spectroscopy.293 Bacitracin contains four D-amino acids, including D-Glu4, D-Orn7, D-Phe9,

and D-Asp11, and a thiazoline ring formed by condensation of the carboxylate of Ile1 with the –NH2

and the –SH groups of Cys2 (Fig. 19). A cyclic heptapeptide structure is formed via an amide bond

linkage between the side-chain e-NH2 of Lys6 and the C-terminus of Asn12. These unusual structural

features may protect this peptide from degradation by proteases.

Like those structurally diverse peptides and polyketides and their hybrids such as BLM (Section

2.A ‘‘Bleomycin’’), bacitracin congeners are also nonribosomal products of a large peptide synthetase

complex.294 The structure and mechanism of bacitracin synthetase resemble those of other peptide

and polyketide synthetases, which are comprised of a multi-domain modular structure for the

catalysis of the initiation of the thioester linkage to the enzyme, elongation of the thioester-linked

amino acid, and termination of the peptide or polyketide chain by a thioesterase domain.77

Bacitracin synthetase has been known since its early studies to comprise of a complex modular

structure as in the case of other peptide/polyketide synthetases. This enzyme catalyzes an ATP-

dependent synthesis of bacitracin, starting from the N-terminus based on the observation of a few N-

terminal peptidyl intermediates such as Ile-Cys, Ile-Cys-Leu, Ile-Cys-Leu-Glu, and several other

N-Ile-containing peptides.295 The role of ATP has been suggested to be involved in the formation of

the labile aminoacyl adenosine intermediates. As in the case of other nonribosomal peptide/

polyketide biosyntheses, the synthesis of bacitracin has been suggested to involve thioester-linkages

Figure 19. AminoacidsequencesandN-terminalstructuresofafewcongenersofbacitracin.BacitracinA1contains Ile
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based on the observation of covalent peptide–enzyme complexes.77 The thiazoline ring in bacitracin

has been suggested to be synthesized at the stage of Ile-Cys formation on the basis of the detection of

the oxidized thiazole product of the Ile-Cys intermediate.296 The thiazoline ring and analogous

thiazole ring are found in a number of peptide antibiotics and siderophores that are synthesized with a

similar mechanism.76,297 An early study revealed that the activity of bacitracin synthetase is affected

by Mg2þ , Mn2þ , Fe2þ , and Co2þ (Zn2þ was not checked) as well as bacitracin,298 suggesting a

feedback control of the synthetase by bacitracin and metal ions.

The bacitracin synthetase operon contains the gene bacA, bacB, and bacC which have been

recently cloned and determined to encode three products BA1 of 598 kDa, BA2 of 297 kDa, and BA3

of 723 kDa.294 BA1 contains five modules to incorporate the first five amino acids, an epimerization

domain attached to the forth module for the inclusion of D-Asp4, and a cyclization domain for the

formation of the thiazoline ring between Ile1 and Cys2; BA2 is comprised of two modules and an

epimerization domain for D-Orn6 incorporation; and BA2 contains five modules for the addition of

Ile8-Asn12 with two epimerization domains and the thioesterase domain, consistent with previous

studies.294 A disruption of the bacB gene results in a bacitracin-deficient mutant, confirming the

involvement of this gene in bacitracin synthesis. Moreover, the expression of a foreign bacitracin

synthetase in a host B. subtilis results in the production of bacitracin at high level, confirming the

functional role of bacitracin synthetase and its association with bacitracin self-resistance genes.299

The available genes of bacitracin synthetase and other peptide/polyketide synthases/synthetases

afford us the tools for possible preparation of different congeners of peptide antibiotics with higher

activities for combating bacterial infections.79

B. Metal Complexes and Antibiotic Mechanism

Bacitracin requires a divalent metal ion such as Zn2þ for its antibiotic activity,300 and can form a 1:1

complex with several divalent transition metal ions, including Co2þ , Ni2þ , Cu2þ , and Zn2þ .301 The

Co2þ–bacitracin complex binds tightly to C55-isoprenyl (undecaisoprenyl or bactoprenyl) pyro-

phosphate with a formation constant of 1.05� 106 M�1.302 This binding capability of metall-

obacitracin presumably prevents the long-chain pyrophosphate from dephosphorylation by a

membrane-bound pyrophosphatase, which subsequently inhibits cell wall synthesis because the

hydrolytic product undecaisoprenyl phosphate is required to covalently bind UDP-sugars for

transport of the sugars during cell wall synthesis.303 Thus, the binding of metal–bacitracin complexes

to undecaisoprenyl pyrophosphate is the key step in the inhibition of cell wall synthesis by this

antibiotic since the sugars become unavailable as building blocks during cell wall synthesis. Although

the formation of the Co2þ–bacitracin–undecaisoprenyl pyrophosphate ternary complex was

suggested in previous studies,302 the structure of different metal–bacitracin complexes and the

structure–activity relationship of this antibiotic were not conclusively defined.

C. Coordination Chemistry of Metal Complexes

An early NMR study of Zn2þ–bacitracin suggested that His-10 and the thiazoline ring sulfur atom

rather than the nitrogen atom were coordinated to the metal,301 but did not implicate other moieties as

metal binding ligands. A later EPR study on Cu2þ–bacitracin revealed a slightly rhombic EPR

spectrum with gx ¼ 2.058, gy ¼ 2.047, and gz ¼ 2.261 and a large copper hyperfine coupling

constants of Az ¼ 534 MHz, typical of a tetragonally distorted Cu2þ center.301b The detection of clear

superhyperfine coupling is indicative of the presence of N ligands. The coordination environment of

this complex was suggested to be comprised of ligands from thiazoline ring nitrogen, the His10

imidazole, the D-Glu4 carboxylate, and the Asp11 carboxylate. The results from a recent X-ray

absorption spectroscopic study via the examination of the extended X-ray absorption fine structure

(EXAFS) of Zn2þ–bacitracin in solid form indicated the involvement of three nitrogens and one

oxygen in the first coordination sphere with a tetrahedral-like geometry.304 The ligands are suggested
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to be thiazoline nitrogen, His10 imidazole, D-Glu4, and possibly the N-terminal amino group. The

binding of metal through thiazoline sulfur is excluded in this study. This study has provided further

insight into the metal binding environment of Zn2þ–bacitracin and corroborates some previous

observations.

The structure of the metal coordination has emerged from the spectroscopic studies discussed

above and a recent NMR study of the paramagnetic Co2þ complex.305 The hyperfine-shifted 1H-

NMR signals of Co2þ–bacitracin complex have been successfully assigned by the use of both 1D- and

2D-NMR techniques as shown in Figure 20. The metal-binding ligands have been conclusively

identified in this NMR study, which are assigned to be the Ne of His10, the carboxylate of D-Glu4, and

the thiazoline nitrogen. The N-terminal amino group is not bound to the metal. The identification of

several signals attributed to protons near the metal allows a model to be built using relaxation times as

distance constrains (Fig. 21). It is interesting to note in the model that a hydrophobic pocket is formed

by the side chains of Ile5 and D-Phe9, which presumably can serve as the binding site for the

hydrophobic hydrocarbon chain of the sugar-carrying undecaisoprenyl pyrophosphate.

D. Structure–Function Relationship

Further investigation of the Co2þ complexes of several other congeners, including the active

bacitracins B1 and B2 and the inactive stereoisomer A2 and the oxidized form F (which have been

characterized with mass spectrometry and 1D- and 2D-NMR techniques306), revealed that a proper

metal binding is essential for bacitracin to exhibit antibiotic activity. That is, all the active congeners

have similar metal binding properties and coordination chemistry as bacitracin A1, whereas the metal

binding patterns of the inactive bacitracins A2 and F are different from that of the active forms, in

which Glu10 in bacitracin A2 and both Glu10 and the oxidized thiazole ring in F are not involved in

metal binding.305 This study thus reveals a relationship between the structure, metal binding, and

antibiotic activity of this antibiotic.

The structure of metal-free bacitracin has been determined by means of 2D-NMR spectroscopy,

which revealed that the side chains of D-Phe9 and Ile8 are in close proximity of Leu3.307 However, the

result from the study of the Co2þ complex indicates that D-Phe9 and Ile5 are close to each other.305

This difference is possibly induced by the metal binding. Bacitracin is known to bind to serine

proteases, and the crystal structures of bacitracin–protease complexes have recently been

determined.308 The protease-bound bacitracin has an extended structure, which prevents metal from

binding to the antibiotic. This structure of bacitracin is different from both the metal-free and metal-

bound forms in solution determined by means of NMR. Bacitracin has also been known to inhibit

metalloproteases, presumably because of its metal-binding capability.309 In addition to protease

inhibition, bacitracin can also inhibit a membrane-bound protein disulfide isomerase,310 and may

serve as a selective inhibitor of b1 and b7 integrin following a not yet known mechanism.311 Thus, the

Figure 20. ProtonNMR spectrumof theCo
2þ

complexof bacitracin inH2OatpH 5.5.The signalshavebeenassignedas indicated

by theuse of1D-and 2D-NMR techniques.
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inhibitory property toward proteins may serve as a unique ‘‘alternative activity’’ of this antibiotic,

in addition to its better documented inhibition activity toward bacterial cell wall synthesis.

5 . I O N O P H O R E S A N D S I D E R O P H O R E S

Ionophores3,312–316 and siderophores317 are relatively small molecules excreted by microorganisms

which can selectively bind and transport alkali or alkaline earth metal ions and Fe3þ , respectively,

across cell membranes and artificial lipid bilayers. These molecules can serve as antibiotics by (a)

disturbing the ionic balance across membrane via ion transport (particularly, the transport of alkali

and alkaline earth metal ions), such as nactins, lasalocid, and valinomycin, (b) creating pores on

membranes which results in leaking of cations through the pores, such as gramicidins, and (c)

competing for essential iron in the environment, such as ferrichromes. The antibiotic activity of

ionophores have also entitled them to be practically used as growth promoters and for increasing

agricultural products.318

A. Structure, Cation Binding, and Transport of Ionophores

Cation transport across the membrane by ionophores requires the participation of specific membrane

proteins and is strictly regulated. The transport of cations results in disturbance of the ionic balance

across the membrane upon release of the bound metal ions. This disturbance may slow down normal

cell growth or even cause cell death. This family of cation-binding microbial products can thus be

considered antibiotics. As opposed to the metalloantibiotics discussed in previous sections in which

the metal ions serve as an integral part of the molecules to exhibit antibiotic activities, the metal

ions themselves in metalloionophores serve as the ‘‘magic bullets.’’ The release of metal ions from

the metalloionophores in the cells can cause imbalance of potential across cell membrane

which engenders antibiotic activities of ionophores. In the case of ion-channeling antibiotics, the

‘‘magic bullets’’ are transported directly into the cells to result in antibiotic effect. The mechanism of

this type of antibiotic activity has been adopted in a recent design of channel-forming antibacterial

agents.319

Figure 21. Stereo viewof Co
2þ

^bacitracin A1producedbymeansofmolecularmodelingusingnuclearmagnetic relaxation rates

as distance constraints.Themetal ion is coordinated to thedrug through thenitrogenof thiazoline ring, the carboxylate of Glu
4
, and

the ring Neof His
10
.TheN-terminal amine isnot bound to themetal, butmaybehydrogen-bonded to Asn

12
.The side chains of Phe

9

and Ile
5
are incloseproximityandmayserveasaflexiblehydrophobicbindingsitefor lipidpyrophosphates.Thisstructure isexpected

tobe similar to the structures of the Co
2þ

complexesof bacitracins B1and B2 withhighantibiotic activities.
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1. Structure and Metal Binding

Metal binding to ionophores and siderophores is the key step that allows specific receptors on the cell

surface to recognize the metalloforms of the molecules, which results in transport of metal ions across

the membrane into the cell. Upon binding of metal ions, conformational changes of ionophores and

siderophores may occur.312 The structure of the metalloforms may vary dramatically, depending on

the bound metal ions. In the case of enniatin (which has a cyclic[L-N-methyl-valine-D-hydroxy-

isovalerate]3 structure), the parent ionophore has a structure very similar to its Kþ complex, whereas

the Rb2–enniatin complex has a structure quite distinct from that of the metal-free form.320 This

difference is attributed to the different ionic radii and binding affinities of alkali metal ions with

enneatin. In many other cases, the binding of metal ions results in significant changes of the struc-

tures of ionophores from more extended conformations to more folded forms on the basis of the

crystal structures of nactins (e.g., nonactin, tetranactin, and dinactin) and valinomycin and their

metalloforms.321,322

A common structural feature of this family of antibiotics is the presence of an O-rich metal

binding environment, including ether and ketide linkages, the carbonyl group of esters and amides,

and carboxylates. Schematic structures of a few ionophores are shown in Figure 22. Such polyketide

structure is synthesized by polyketide synthases via C–C bond (type I and II polyketide synthases) and

C–O bond (type III polyketide synthase) formation, analogous to the peptide synthetase for bacitracin

synthesis (Section 4) and peptide/ketide synthetase for BLM synthesis (Section 2.A ‘‘Bleomycin’’).

Type III polyketide synthase has been demonstrated to be involved in the synthesis of the C–O

formation in the antibiotic nonactin (Fig. 22A).75m

Since these O-rich moieties are preferred ligands for alkali and alkaline earth metal ions, the

preference in metal binding is thus not because of the ligands but controlled by different mechanisms

Figure 22. Schematic structuresofnactins (A):Nonactin (R1,R2,R3, and R4 ¼ CH3), monactin (R1 ¼ C2H5; R2,R3, and R4 ¼ CH3),

trinactin (R1and R3 ¼ C2H5; R2 and R4 ¼ CH3), and tetranactin (R1,R2,R3, and R4 ¼ C2H5); valinomycin, whichhasacyclic struc-

turewith three repeatingunits of (L-Val^L-Lactate^D-Val^D-hydroxylisovalerate) (B); lasalocid (C), andmonensin (D).
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such as the different molecular structures, the different sizes of the metal-binding site, the different

ionic radii of metal ions (i.e., 0.66, 0.95, 1.33, 1.48, and 1.69 Å for Liþ , Naþ , Kþ , Rbþ , and Csþ ,

respectively), the use of different moieties for metal binding, and/or the different degrees of hydration

energy of cations. For instance: (i) while lasalocid with a linear structure has a larger apparent affinity

for its Ca2þ binding than its Kþ binding in the presence of vesicle membrane,323 the cyclic nactins

exhibit higher preference toward monovalent cation binding and best in the binding with NH4
þ .314 (ii)

The larger binding cavity in nonactin than in tetranactin (Fig. 22A) results in a binding affinity of

Csþ > Naþ for nonactin, but Naþ >Csþ for tetranactin.324 (iii) The large ‘‘metal binding cavity’’ in

valinomycin (Fig. 22B) allows its binding with one (e.g., Kþ ) or two (e.g., Ba2þ ) metal ions.312 (iv)

X-ray crystal structures show that Kþ is bound to valinomycin at the ‘‘internal binding site,’’ whereas

Naþ at an ‘‘external binding site.’’322 (v) While the apparent formation constants for Kþ and Naþ

binding to nonactin in dry acetone are in the same order, that for Na2þ is significantly decreased in the

presence of water which indicates the importance of hydration in cation binding to nactins.325

2. Carboxylic Ionophores

This family of ionophores are comprised of a linear polycycloether backbone and a carboxylate group,

as represented by lasalocid and monensin (structuresC andD, Fig. 22). Most of these ionophores bind

monovalent cations with a one-to-one ratio and bind divalent cations with a metal:ligand ratio of 1:2,

in which the cyclic ether-O atoms serve as metal-binding ligand.326 Recent FT-IR and 7Li- and 23Na-

NMR studies suggest that lasalocid forms a fluxional 1:1 complex with Liþ and 2:2 complexes with

Kþ , Rbþ , and Csþ ions in solid and in chloroform,327 and 1:1 and 2:2 complexes with Naþ in

chloroform.328 The neutral and acid complexes of lasalocid with alkali metals, Tlþ , Agþ , and

alkaline earth metal ions have been studied with 1H- and 13C-NMR, and have been suggested to

possess similar structures.329 Lanthanide(III) (Ln3þ ) complexes of lasalocid with different metal-to-

drug ratios have also been reported.330 Extraction of water-soluble Ln3þ–acetylacetonato (acac)

complexes into organic solvent by lasalocid was observed, in which ternary lasalocid–Ln3þ–acac

complexes are proposed to form with high preference toward smaller Ln3þ ions.331 Metal com-

plexation of lasalocid has recently been reviewed.332

3. Gramicidin Family

Gramicidins are a family of peptide ionophores3,333 produced by Bacillus brevis as a mixture of a few

congeners with different amino acid compositions, of which Gramicidin A is the major component

whose primary structure is shown below.3

Formyl-L-Val1–Gly2–L-Ala3–D-Leu4–L-Ala5–D-Val6–L-Val7–D-Val8–L-Trp9–D-Leu10– L-Trp11–

D-Leu12–L-Trp13–D-Leu14–L-Trp15–ethanolamine.

L-Trp11 in gramicidin A is replaced by L-Phe in gramicidin B, and by L-Tyr in gramicidin C. This

family of ion channeling antibiotics exhibit a different mechanism for their action from the cation-

carrying ionophores described in the above section. Gramicidins can insert into the lipid bilayer as a

dimer and span across the membrane, forming a unique b-double-stranded helix which creates a

channel of �4 Å wide for cations to permeate (Fig. 23).334 This channel exhibits an cation selectivity

of Hþ > NH4
þ > Csþ > Rbþ > Kþ > Naþ > Liþ > N(CH3)4

þ in 0.1 M salt,335 yet does not

show permeability to divalent metal ions Mg2þ , Ca2þ , Ba2þ , and Zn2þ . The divalent metal ions can

bind to the b-double-stranded helix structure at the entrance of the channel which prevents the

transport of monovalent cations.336 The trend in the alkali metal binding affinity follows the same

order as the relative ionic mobility, ionic radius, and hydration energy of the ions.3

The structures of several gramicidin congeners and their metal-bound forms have been de-

termined with X-ray crystallography337 and NMR spectroscopy in both micelles338 and solid

states333,339,340 (Fig. 23). Similar configurations are observed for the peptide backbone in both

solution and solid states.337–341 However, deviations are observed among side chains, particularly
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Trp-9. The structures in solution determined with NMR spectroscopy exhibit a higher degree of

irregularity than the structures in solid state determined with crystallography, such as the shape of the

channel (Fig. 23, top). The binding of monovalent metal ions does not seem to cause significant

structural change of gramicidins. The structure similarity of this antibiotic with and without bound

cations is quite reasonable since the insertion of gramicidins into membranes does not rely on the

binding of metal ions as in the case of other ionophores described above. In addition, the similarity

does not create further energy barrier for metal binding and transportation. According to these

structures, the hydrophobic amino acid side chains are located outside the channel. This molecular

arrangement allows gramicidins to exhibit extensive hydrophobic interaction with membrane upon

insertion into the membrane, whereas the carbonyl groups are positioned inside the channel for

interaction with and transportation of cations.

Figure 23. Structures ofgramicidin Adeterminedwith NMR spectroscopy (top, Protein Data Bank ID:1MIC.pdb) and X-ray crystal-

lography (middle, top view; bottom, side view,Protein Data Bank ID:1AV2).Three Cs
2þ

ions located in the channel are found in the

crystal structure.

730 * MING



The structures of gramicidins A, B, and C in micelles obtained by means of 2D-NMR techniques

are very similar, with background atom RMSD 90.5 Å ascribed to similar structures.338 The side

chains in these three congeners also have similar configurations. Despite their very similar structures

and monovalent cation specificity, gramicidins A, B, and C exhibit different cation binding and

transporting properties, such as the conductance and activation energy for ion transport. The minor

variations in the structures of the three congeners cannot explain these significantly different

properties. Change in dipole moment of the side chains (i.e., dipole moments of 2.08, 0, and 1.54 D for

Trp, Phe, and Tyr, respectively) was suggested to cause the difference. The decrease in the single

channel conductance of Naþ for several natural and synthetic gramicidin congeners was found to

correlate with the replacement of a Trp by Phe, which decreases the dipole moment.338a

B. Iron Sequestering and Antibiotic Activities

The extremely small solubility product Ksp of �10�38 for Fe(OH)3 makes soluble Fe3þ in aqueous

solutions very scarce. To overcome this low availability of iron under aerobic conditions,

microorganisms excrete Fe3þ -specific siderophores (Fig. 24) which bind Fe3þ with extraordinarily

high affinity constants in the range of �1030–1052 M�1 and transport Fe3þ into cells via specific

receptors.317,342 Once the Fe3þ complexes of siderophores are transported into the cells, the iron can

be released upon reduction. In addition to the iron transport activity of siderophores, the Cu2þ , Co3þ ,

and Ni2þ complexes of the siderophore desferal were found to exhibit an interesting ‘‘alternative

bioactivity’’ toward the cleavage of plasmid DNA and oligonucleotides343 which points a new

direction for design of new ‘‘chemical nucleases.’’

1. Mechanism and Structure of Siderophores

The biosynthesis of siderophores is regulated by cellular concentration of Fe2þ .344 When the

concentration is low, Fe2þ is dissociated from an ferric uptake regulatory (Fur) protein, resulting in

the binding of Fur to the operon that initiates the synthesis and excretion of siderophores for Fe3þ

sequestering.342 The Fe3þ–siderophore complexes can be recognized by species-specific receptors

and transported into the cells. For example, although ferrichrome A serves as an iron carrier for fungi,

it does not serve that purpose in bacteria; whereas ferrichrome does.345 Thus, a rational approach to

chemotherapy becomes possible when it is based on iron transport mechanism in microorganisms317

Figure 24. Two prototypical families of Fe-free siderophores: (A) hydroxamate-based ferrioxamines B (R ¼ NH3
þ
), D1

(R ¼ NHCOCH3),andE(R ¼ NHCOCH2CH2 thatclosesthechaintogivea3-foldsymmetricringstructure)and(B) catechol-based
enterobactin.
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by (a) controlling iron transport via iron chelating, (b) transport of an antibiotic substance via

conjugating with siderophores (e.g., albomycin discussed below), and/or (c) inactivation of sidero-

phore receptors via inhibitor binding.

The crystal structures of several hydroxamate-containing Fe3þ -bound siderophores have been

resolved which allow a detailed comparison of their structures and correlation of their structures with

function. While the crystal structures show that the iron complexes of ferrioxamines B,346 D1,347 and

E348 and desferrioxamine E349 are mixture of L- and D-cis isomers, ferrichrome complexes350 are

shown to be exclusively the L-cis isomers. This cis configuration seems to be important for the

recognition of these siderophores by membrane receptors (see next Section), wherein the ‘‘carbonyl

face’’ is considered to play an important role since the ‘‘oxime face’’ is relatively more shielded than

the carbonyl face in the structures of these siderophores.

2. Albomycin Structure and Receptor Binding

Albomycin is a prototypical siderophore antibiotic produced by Streptomyces. It is a broad-spectrum

antibiotic active against several Gram-positive and -negative bacteria with low minimum inhibition

concentrations, and is even active toward those bacteria resistant to penicillin, streptomycin, TC, and

erythromycin.317,351 This antibiotic is a natural conjugate comprised of an iron-binding tri-d-N-

hydroxy-d-N-acetyl-L-ornithine site analogous to that of ferrichromes and an antibiotic moiety of

thioribosyl pyrimidine (Fig. 25). Albomycin is recognized by the ferrichrome receptor in the outer

cell membrane of E. coli,352 and is activated after cleavage by peptidase N to release the antibiotic

moiety. Thus, albomycin-resistant bacteria are found to lack either the receptor353 or the peptidase.354

Iron-depleted siderophores are expected to have quite flexible and extended structures. Upon

Fe3þ binding, the metal binding ligands are held together by the metal and exhibits a compact metal-

binding configuration which is recognized by the ferrichrome receptors (cf. Fig. 25). A few structures

of the membrane transporter protein FhuA (ferric hydroxamate uptake A protein) with and without a

bound Fe3þ–sederophore have been determined (Fig. 25).355 The Fe3þ binding moiety of the Fe3þ

complexes of phenylferricrocin, albomycin, ferrichrome, and ferricrocin have quite similar coordina-

tion chemistry upon their binding to FhuA, and are bound to the receptor in a similar orientation and

interacts with the same amino acid side chains, including Tyr and Arg side chains. The cis con-

figurations of the Fe3þ–siderophore complexes bound to the uptake proteins are found to be the same

as those of Fe3þ–siderophores without bound to the protein.346–350 Similar interactions and confi-

guration are also observed in the crystal structure of gallichrome–FhuD complex.356 The binding of

Fe3þ–ferichrome to FhuA induces a significant conformational change through the N-terminal

domain, including an unwinding of helix 2 near the binding site and a �11-Å translation of the loop

next to it, as well as a 17-Å moving of Trp22 on the oppose side from the binding site. How these

changes result in the uptake of the Fe3þ–siderophore complexes and transport through cell membrane

could not be revealed in the crystallographic studies.

Recently, a semi-synthetic rifamycin analogue CGP4832 was found to bind to and actively

transported by FhuA protein, despite its distinctly different structure from those of albomycin and

ferrichrome.357 In addition to FhuA, the membrane transporters FepA (ferric enterobactin transport

protein)358 and FecA (ferric citrate uptake protein which recognizes and transports the dinuclear

Fe(III)2–citrate2 complex)359 are also characterized to contain the 22-stranded b-barrel structure as

found in FhuA,360 with a cross section of �35–45 Å. The above studies have provided the molecular

basis for rational design of antibiotic siderophores that target bacteria through specific siderophore

receptors of the bacteria.

C. Perspectives of Metal Ions in Medicine

In addition to the metalloantibiotics discussed in this review, a number of drugs and potential

pharmaceutical agents also contain metal-binding or metal-recognition sites, which can bind or
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interact with metal ions and potentially influence their bioactivities and might also cause damages on

their target biomolecules. Numerous examples these ‘‘metallodrugs’’ and ‘‘metallopharmaceuticals’’

and their actions can be found in the literature, for instance: (a) several anti-inflammatory drugs, such

as aspirin and its metabolite salicylglycine,361 ibuprofen,362 the indole derivative indomethacin,363

bioflavonoid rutin,364 diclofenac,365 suprofen,366 and others367 are known to bind metal ions and

affect their antioxidant and anti-inflammatory activities; (b) the potent histamine-H2-receptor

antagonist cimetidine368 can form complexes with Cu2þ and Fe3þ , and the histidine H2 blocker

Figure 25. Top: Schematic structure of albomycin.Middle: The crystal structure of the Fe3þ^albomycin^FhuA complex (Protein

DataBank ID1QKC).TheFe
3þ
^drugcomplex is shownin redcolor (Fe

3þ
ingreen), and theproteinasgray ribbons.Thebindingsite

of the drug complex is located inside the FhuA‘‘pocket.’’Bottom: The structure of Fe3þ^albomycin seen in the crystal structures of
the Fe

3þ
^albomycin^FhuA complex, in which the residues involved in H-bonding with the Fe3

3þ
^albomycin are shown in

blue color.
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antiulcer drug famotidine can also form stable complex with Cu2þ ;369 (c) the anthelmintic and

fungistatic agent thiabendazole, which is used for the treatment of several parasitic diseases, forms a

Co2þ complex with metal:drug ratio of 1:2;370 (d) the Ru2þ complex of the anti-malaria agent

chloroquine exhibits an activity two to five times higher than the parent drug against drug-resistant

strains of Plasmodium faciparum;371 (e) a number of Ru2þ /3þ and Rh2þ /3þ complexes are found to

bind DNA and exhibit anti-tumor activities;256,372 (f) the antiviral trifluoperazine forms complexes

with VO2þ , Ni2þ , Cu2þ , Pd2þ , and Sn4þ which exhibit higher inhibition activities than the metal-

free drug when tested on Moloney murine leukemia virus reverse transcriptase;373 (g) the clinically

useful b-lactamase inhibitor sulbactam can form complexes with Ni2þ , Cu2þ , and Fe3þ ;374 (h) a few

hormone-anchored metallodrugs have been prepared which show enhanced receptor binding and

higher activities against cancer cells;241,375 (i) the thiosemicarbazone-conjugated isatin (which shows

a broad-spectrum bioactivity376) can bind late first-row transition metal ions and exhibit activity

toward human leukemia cell lines, however, without inducing cell apoptosis;377 and (j) metal

complexes (including Be2þ , Mg2þ , Mn2þ , Co2þ , Ni2þ , Cu2þ , Zn2þ , Cd2þ , Pb2þ , Fe3þ , Al3þ , and

La3þ ) of several carbonic anhydrase inhibiting sulfonamides378 have been investigated for their

topical intraocular pressure lowering properties and as potential agents against gastric acid

imbalances.

There are also a number of metallodrugs and metallopharmaceuticals which have been utilized

for the treatment of diseases and disorders or as diagnostic agents,233e,379,380 such as gold antiarthritic

drugs, bismuth antiulcer drugs, gadolinium MRI contrast agents, technetium radiopharmaceuticals,

metal-based X-ray contrast agents, and photo- and radio-sensitizers, vanadium as insulin mimics, and

lithium psychiatric drugs. The metal ion Liþ can be considered the smallest effective metallodrug

whose carbonate and citrate salts exhibit significant therapeutic benefit in the treatment of manic

depression (bipolar mood disorder).381 Some recent studies by means of 3D-MRI techniques indicate

that the volume of the brain gray matter is increased in bipolar disorder patients treated with Liþ .382

The status of Liþ in cells have been extensively studied and recently reviewed.381,383 It is also

interesting to point out that the metal ion Sb3þ may be regarded as the simplest ‘‘metalloantibiotic’’

from a broader viewpoint of the term, whose salts (including N-methylglucamine antimonite and Na-

stibogluconate) have been utilized for the treatment of leishmaniasis against the protozoan parasite

Leishmania.384 The antiprotozoal mechanism of Sb3þ is thought to be attributed to its binding to

trypanothione that is essential for the growth of the parasite.

This review has summarized the structure, function, and activity of several different families of

metalloantibiotics, and has also pointed out the design and potential utilization of metal complexes for

battling pathogenic microorganisms. Because of the increase in bacterial resistance toward many

currently used antibiotics in recent years, further development of new antibiotics has become an

urgent mission. Better understanding of the structure, function, and mechanism of existing

metalloantibiotics and the mechanism of antibiotic resistance will lead to better design of metal

complexes for this mission. As the chemical properties of metal ions can vary significantly and can

also be further fine-tuned by proper design of drug ligands for targeting different biomolecules and

biocomponents, new generations of various ‘‘metalloantibiotics’’ isolated from natural resources or

obtained via chemical syntheses and/or modifications that exhibit more effective antiparasitic,

antibacterial, antiviral, and anti-tumor activities can be foreseen.
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crystal and molecular structure at 2.0 Å resolution. Nucleic Acids Res 1995;23:1710–1716. (g) Smith CK,
Davies GJ, Dodson EJ, Moore MH. DNA–nogalamycin interactions: The crystal structure of d(TGATCA)
complexed with nogalamycin. Biochemistry 1995;34:415–425. (h) Smith CK, Brannigan JA, Moore MH.
Factors affecting DNA sequence selectivity of nogalamycin intercalation: The crystal structure of
d(TGTACA)2-nogalamycin2. J Mol Biol 1996;263:237–258. (i) Gao Y-G, Robinson H, Wijsman ER, van
der Marel GA, van Boom JH, Wang AH-J. Binding of daunomycin to beta-D-glucosylated DNA found in
protozoa Trypanosoma brucei studied by X-ray crystallography. JAm Chem Soc 1997;119:1496–1497. (j)
Podell ER, Harrington DJ, Taatjes DJ, Koch TH. Crystal structure of epidoxorubicin-formaldehyde virtual
crosslink of DNA and evidence for its formation in human breast-cancer cells. Acta Crystallogr D
1999;55:1516–1523.

145. (a) Searle MS, Bicknell W. Interaction of the anthracycline antibiotic nogalamycin with the hexamer
duplex d(5 0-GACGTC)2. An NMR and molecular modeling study. Eur J Biochem 1992;205:45–58. (b)
Yang D, Wang AH. Structure by NMR of antitumor drugs aclacinomycin A and B complexed to
d(CGTACG). Biochemistry 1994;33:6595–6604. (c) Caceres-Cortes J, Wang AH. Binding of the
antitumor drug nogalamycin to bulged DNA structures. Biochemistry 1996;35:616–625. (d) Williams HE,
Searle MS. Structure, dynamics, and hydration of the nogalamycin-d(ATGCAT)2 complex determined by
NMR and molecular dynamics simulations in solution. J Mol Biol 1999;290:699–716. (e) Robinson H,
Priebe W, Chaires JB, Wang AH. Binding of two novel bisdaunorubicins to DNA studied by NMR
spectroscopy. Biochemistry 1997;36:8663–8670.

146. Chakrabarti S, Mahmood A, Kassis AI, Bump EA, Jones AG, Makrigiorgos GM. Generation of hydroxyl
radicals by nucleohistone-bound metal–adriamycin complexes. Free Rad Res 1996;25:207–220.

147. Olson RD, Mushlin PS. Doxorubicin cardiotoxicity—Analysis of prevailing hypotheses. FESEB J
1990;4:3076–3086. (b) Singal PK, Iliskovic N, Li T, Kumar D. Adriamycin cardiomyopathy:
Pathophysiology and prevention. FASEB J 1997;11:931–936. (c) Lee V, Randhawa AK, Singal PK.
Adriamycin-induced myocardial dysfunction in vitro is mediated by free radicals. Am J Physiol
1991;261:H989–H995. (d) Singal PK, Panagia V. Direct effects of adriamycin on the rat heart sarcolemma.
Res Commun Chem Pathol Pharmacol 1984;43:67–77.

148. De Jong J, Husken BCP, Beekman B, van der Vijgh WJF, Bast A. Radical formation by metal-complexes of
anthracyclines and their metabolites—Is there a relation with cardiotoxicity? Eur J Pharm Sci 1994;2:229–
237.

149. Minotti G, Cairo G, Monti F. Role of iron in anthracycline cardiotoxicity: New tunes for an old song?
FASEB J 1999;13:199–212. (b) Olson RD, Mushlin PS, Brenner DE, Fleischer S, Cusack BJ, Chang BK,
Boucek RJ, Jr. Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Nat Acad
Sci USA 1988;85:3585–3589. (c) Boucek RJ, Jr., Olson RD, Brenner DE, Ogunbunmi EM, Inui M,
Fleischer S. The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps.
A correlative study of cardiac muscle with isolated membrane fractions. J Biol Chem 1987;262:15851–
15856.

150. Martin RB. Tetracyclines and daunomycin. Met Ions Biol Sys 1985;19:19–52.

746 * MING



151. (a) Papakyriakou A, Anagnostopoulou A, Garnier-Suillerot A, Katsaros N. Interaction of uranyl ions with
daunorubicin and adriamycin. Eur J Inorg Chem 2002;1146–1154. (b) Balestrieri E, Bellugi L, Boicelli A,
Giomini M, Giuliani AM, Giustini M, Marciani L, Sadler PJ. Interaction of tin(IV) with doxorubicin. J
Chem Soc Dalton Trans 1997;4099–4105. (c) Pereira E, Fiallo MML, Garniersuillerot A, Kiss T,
Kozlowski H. Impact of aluminum ions on adriamycin-type ligands. J Chem Soc Dalton Trans 1993:455–
459.

152. (a) Greenaway FT, Dabrowiak JC. The binding of copper ions to daunomycin and adriamycin. J Inorg
Biochem 1982;16:91–107. (b) Tachibana M, Iwaizumi M, Tero-Kubota SJ. EPR studies of copper(II) and
cobalt(II) complexes of adriamycin. J Inorg Biochem 1987;30:133–140. (c) Tachibana M, Iwaizumi M.
EPR and UV-visible spectroscopic studies of copper(II) and cobalt(II) complexes of hydroxyanthraqui-
nones. J Inorg Biochem 1987;30:141–151.

153. (a) Matzanke BF, Bill E, Butzlaff C, Trautwein AX, Winkler H, Hermes C, Nolting H-F, Barbieri R, Russo
U. Evidence for polynuclear aggregates of ferric daunomycin. A Mössbauer, EPR, X-ray absorption
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215. (a) Höffken G, Borner K, Glatzel PD, Koeppe P, Lode H. Reduced enteral absorption of ciprofloxacin in the
presence of antacids. Eur J Clin Microbiol Infect Dis 1985;4:345–345. (b) Turel I, Sonc A, Zupancic M,
Sepcic K, Turk T. The synthesis and biological activity of some magnesium(II) complexes of quinolones.
Met Based Drugs 2000;7:101–104.

216. (a) Gao F, Yang P, Xie J, Wang H. Synthesis, characterization and antibacterial activity of novel Fe(III),
Co(II), and Zn(II) complexes with norfloxacin. J Inorg Biochem 1995;60:61–67.
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cisplatin interstrand cross-link at 1.63 Å resolution: Hydration at the platinated site. Nucleic Acids Res
1999;27:1837–1846. (b) Takahara PM, Rosenzweig AC, Frederick CA, Lippard SJ. Crystal structure of
double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 1995;377:649–
652. (c) Coll M, Sherman SE, Gibson D, Lippard SJ, Wang AH. Molecular structure of the complex formed
between the anticancer drug cisplatin and d(pGpG):C222(1) crystal form. J Biomol Struct Dynam
1990;8:315–330.

236. (a) Gelasco A, Lippard SJ. NMR solution structure of a DNA dodecamer duplex containing a cis-
diammineplatinum(II) d(GpG) intrastrand cross-link, the major adduct of the anticancer drug cisplatin.
Biochemistry 1998;37:9230–9239. (b) Parkinson JA, Chen Y, del Socorro Murdoch P, Guo Z, Berners-
Price SJ, Brown T, Sadler PJ. Sequence-dependent bending of DNA induced by cisplatin: NMR structures
of an A.T-rich 14-mer duplex. Chemistry (Germany) 2000;6:3636–3644. (c) Yang D, van Boom SS,
Reedijk J, van Boom JH, Wang AH. Structure and isomerization of an intrastrand cisplatin-cross-linked
octamer DNA duplex by NMR analysis. Biochemistry 1995;34:12912–12920.

237. Farrell N. Current status of structure–activity relationships of platinum anticancer drugs: Activation of the
trans geometry. Met Ions Biol Syst 1996;32:603–639.

238. (a) Zou Y, van Houten B, Farrell N. Ligand effects on platinum binding to DNA. A comparison of DNA
binding properties for cis- and trans-[PtCl2(amine)2] (amine ¼ NH3, pyridine). Biochemistry 1993;32:
9632–9638. (b) Colombier C, Lippert B, Leng M. Interstrand cross-linking reaction in triplexes containing
a monofunctional transplatin-adduct. Nucleic Acid Res 1996;24:4519–4524. (c) Muller J, Drumm M,
Boudvillain M, Leng M, Sletten E, Lippert B. Parallel-stranded DNA with Hoogsteen base pairing
stabilized by a trans-[Pt(NH3)(2)]2þ cross-link: Characterization and conversion into a homodimer and a
triplex. J Biol Inorg Chem 2000;5:603–611.

239. (a) Farrell N, Kelland LR, Roberts JD, van Beusichem M. Activation of the trans geometry in platinum
antitumor complexes: A survey of the cytotoxicity of trans complexes containing planar ligands in murine
L1210 and human tumor panels and studies on their mechanism of action. Cancer Res 1992;52:5065–5072.
(b) van Beusichem M, Farrell N. Activation of the trans geometry in platinum antitumor complexes.
Synthesis, characterization, and biological activity of complexes with the planar ligands pyridine, N-
methylimidazole, thiazole, and quinoline. Crystal and molecular structure of trans-dichlorobis(thiazole)-
platinum(II). Inorg Chem 1992;31:634–639.

240. (a) Coluccia M, Nassi A, Loseto F, Boccarelli A, Mariggio MA, Gordano D, Intini F, Caputo P,
Natile G. A trans-platinum complex showing higher antitumor activity than the cis congeners. J Med
Chem 1993;36:510–512. (b) Cini R, Caputo PA, Intini FP, Natile G. Mechanistic and stereo-
chemical investigation of imino ethers formed by alcoholysis of coordinated nitriles: X-ray crystal
structures of cis- and trans-bis(1-imino-1-methoxyethane)dichloroplatinum(II). Inorg Chem 1995;34:
1130–1137.

241. Murugkar A, Unnikrishnan B, Padhye S, Bhonde R, Teat S, Triantafillou E, Sinn E. Hormone anchored
metal complexes. 1. Synthesis, structure, spectroscopy, and in vitro antitumor activity of testosterone
acetate thiosemicarbazone and its metal complexes. Metal-Based Drugs 1999;6:177–182.

242. Ivanov AI, Christofoulou J, Parkinson JA, Barnham KJ, Tucker A, Woodrow J, Sadler PJ. Cisplatin binding
sites on human albumin. J Biol Chem 1998;273:14721–14730.

243. Cox MC, Barnham KJ, Frenkiel TA, Hoeschele JD, Mason AB, He Q-Y, Woodrow RC, Sadler PJ.
Identification of platination sites on human serum transferrin using C-13 and N-15 NMR spectroscopy.
J Biol Inorg Chem 1999;4:621–631.

244. Jamieson ER, Lippard SJ. Structure, recognition, and process of cisplatin–DNA adducts. Chem Rev
1999;99:2467–2498.

245. Weiss RB, Christian MC. New cisplatin analogues in development. A review. Drugs 1993;46:360–377.
246. Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: An historical

perspective and an update. Eur J Cancer 1998;34:1522–1534.
247. (a) Farrell N. Nonclassical platinum antitumor agents: Perspectives for design and development of new

drugs complementary to cisplatin. Cancer Invest 1993;11:578–589. (b) Farrell N, Qu Y, Hacker MP.
Cytotoxicity and antitumor activity of bis(platinum) complexes. A novel class of platinum complexes

752 * MING



active in cell lines resistant to both cisplatin and 1,2-diaminocyclohexane complexes. J Med Chem
1990;33:2179–2184. (c) Farrell N, Qu Y, Feng L, Van Houten B. Comparison of chemical reactivity,
cytotoxicity, interstrand cross-linking, and DNA sequence specificity of bis(platinum) complexes
containing monodentate or bidentate coordination spheres with their monomeric analogues. Biochemistry
1990;29:9522–9531. (d) Jansen BAJ, van der Zwan J, den Dulk H, Brouwer J, Reedijk J. Dinuclear
alkyldiamine platinum antitumor compounds: A structure–activity relationship study. J Med Chem 2001;
44:245–249.

248. Recent studies: (a) Qu Y, Rauter H, Fontes APS, Bandarage R, Kelland L, Farrell N. Synthesis,
characterization, and cytotoxicity of trifunctional dinuclear platinum complexes: Comparison of effects of
geometry and polyfunctionality on biological activity. J Med Chem 2000;43:3189–3192. (b) Hofr C,
Farrell N, Brabec V. Thermodynamic properties of duplex DNA containing a site-specific d(GpP)
intrastrand crosslink formed by an antitumor dinuclear platinum complex. Nucleic Acids Res
2001;29:2034–2040. (c) Cox JW, Berners-Price SJ, Davies MS, Qu Y, Farrell N. Kinetic analysis of the
stepwise formation of a long-range DNA interstrand cross-link by a dinuclear platinum antitumor complex:
Evidence for aquated intermediates and formation of both kinetically and thermodynamically controlled
conformers. J Am Chem Soc 2001;123:1316–1326.

249. (a) Brabec V, Kasparkova J, Vrana O, Novakova O, Cox JW, Qu Y, Farrell N. DNA modifications by a novel
bifunctional trinuclear platinum Phase I anticancer agent. Biochemistry 1999;38:6781–6790. (b) Colella
G, Pennati M, Bearzatto A, Leone R, Colangelo D, Manzotti C, Daidone MG, Zaffaroni N. Activity of a
trinuclear platinum complex in human ovarian cancer cell lines sensitive and resistant to cisplatin:
Cytotoxicity and induction and gene-specific repair of DNA lesions. Brit J Cancer 2001;84:1387–1390. (c)
Servidei T, Ferlini C, Riccardi A, Meco D, Scambia G, Segni G, Manzotti C, Riccardi R. The novel
trinuclear platinum complex BBR3464 induces a cellular response different from cisplatin. Eur J Cancer
2001;37:930–938.

250. (a) Davies MS, Thomas DS, Hegmans A, Berners-Price SJ, Farrell N. Kinetic and equilibria studies of the
aquation of the trinuclear platinum phase II anticancer agent [{trans-PtCl(NH3)2}2{m-trans-
Pt(NH3)2(NH2(CH2)6NH2)2}]4þ (BBR3464). Inorg Chem 2002;41:1101–1109. (b) McGregor TD,
Hegmans A, Kasparkova J, Neplechova K, Novakova O, Penazova H, Vrana O, Brabec V, Farrell N. A
comparison of DNA binding profiles of dinuclear platinum compounds with polyamine linkers and the
trinuclear platinum phase II clinical agent BBR3464. J Biol Inorg Chem 2002;7:397–404.

251. (a) Weiss RB, Christian MC. New cisplatin analogues in development. A review. Drugs 1993;
46:360–377. (b) Christian MC. The current status of new platinum analogs. Seminars Oncol 1992;19:
720–733. (c) Gordon M, Hollander S. Review of platinum anticancer compounds. J Med 1993;24:209–
265.

252. (a) Braddock PD, Connors TA, Jones M, Khokhar AR, Melzack DH, Tobe ML. Structure and activity
relationships of platinum complexes with anti-tumour activity. Chem-Biol Interact 1975;11:145–161. (b)
Wong WS, Tindall VR, Wagstaff J, Bramwell V, Crowther D. Primary carcinoma of the fallopian tube:
Favorable response to new chemotherapeutic agent, CHIP. J Roy Soc Med 1985;78:203–206. (c) Bramwell
VHC, Crowther D, O’Malley S, Swindell R, Johnson R, Cooper EH, Thatcher N, Howell A. Activity of JM9
in advanced ovarian cancer: A phase I–II trial. Cancer Treat Rep 1985;69:409–416.

253. (a) Northcott SE, Marr JG, Secreast SL, Han F, Dezwaan J. Solution chemistry and analytical
characterization of ormaplatin. J Pharm Biomed Anal 1991;9:1009–1018. (b) Tutsch KD, Arzoomanian
RZ, Alberti D, Tombes MB, Feierabend C, Robins HI, Spriggs DR, Wilding G. Phase I clinical and
pharmacokinetic study of an one-hour infusion of ormaplatin (NSC 363812). Invest New Drugs
1999;17:63–72. (c) Luo FR, Wyrick SD, Chaney SG. Comparative neurotoxicity of oxaliplatin,
ormaplatin, and their biotransformation products utilizing a rat dorsal root ganglia in vitro explant culture
model. Cancer Chemother Pharmacol 1999;44:29–38.

254. (a) McKeage MJ, Raynaud F, Ward J, Berry C, O’Dell D, Kelland LR, Murrer B, Santabárabara P, Harrap
KR, Judson IR. Phase I and pharmacokinetic study of an oral platinum complex given daily for 5 days in
patients with cancer. J Clin Oncol 1997;15:2691–2700. (b) Kelland LR. An update on satraplatin: The first
orally available platinum anticancer drug. Expert Opin Invest Drugs 2000;9:1373–1382.

255. Hall MD, Hambley TW. Platinum(IV) antitumour compounds: Their bioinorganic chemistry. Coord Chem
Rev 2002; published on line February 14, 2002.

256. (a) Farrall N. Tranistion metal complexes as drugs and chemotherapeutic agents. Dordrecht, Netherlands:
Kluwer; 1989. (b) Clarke MJ, Zhu F, Frasca DR. Non-platinum chemotherapeutic metallopharmaceuticals.
Chem Rev 1999;99:2511–2533.
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